Skip to main content
Log in

Complete N-Photon Greenberger-Horne-Zeilinger State Analysis Using Hyperentanglement

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present a scheme for N-photon Greenberger-Horne-Zeilinger (GHZ) state analysis using hyperentanglement in polarization and time-bin degrees of freedom. The scheme only needs linear optics elements and single-photon detectors, which is feasible with current technology. The set of 2 N mutual orthogonal states can be unambiguously distinguished and the protocol is expected to find useful applications in quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Liu, X.S., Long, G.L., Tong, D.M., Feng, L.: General scheme for superdense coding between multiparties. Phys. Rev. A 022304, 65 (2002)

    Google Scholar 

  7. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  9. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  10. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secretsharing schemes. Phys. Rev. A 052307, 69 (2004)

    Google Scholar 

  11. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 032302, 65 (2002)

    Google Scholar 

  12. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 042317, 68 (2003)

    Google Scholar 

  13. Wang, C., Deng, F.G., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 044305, 71 (2005)

    Google Scholar 

  14. Barreiro, J.T., Langford, N.K., Peters, N.A., Kwiat, P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett 260501, 95 (2005)

    Google Scholar 

  15. Kwiat, P.G., Weinfurter, H.: Embedded Bell-state analysis. Phys. Rev. A 58, R2623–R2626 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  16. Walborn, S.P., Padua, S., Monken, C.H.: Hyperentanglement-assisted Bell-state analysis. Phys. Rev. A 68, 042313 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ren, X.F., Guo, G.P., Guo, G.C.: Complete Bell-states analysis using hyperentanglement. Phys. Lett. A 343, 8–11 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Complete deterministic linear optics bell state analysis. Phys. Rev. Lett. 190501, 96 (2006)

    Google Scholar 

  19. Barbieri, M., Vallone, G., Mataloni, P., De Martini, F.: Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement. Phys. Rev. A 042317, 75 (2007)

    Google Scholar 

  20. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys 4, 282–286 (2008)

    Article  Google Scholar 

  21. Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014)

    ADS  Google Scholar 

  22. Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013)

    Article  ADS  Google Scholar 

  23. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  24. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 062325, 77 (2008)

    Google Scholar 

  25. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  26. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)

    Article  ADS  Google Scholar 

  27. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  28. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83, 062316 (2011)

    Article  ADS  Google Scholar 

  29. Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85, 062311 (2012)

    Article  ADS  Google Scholar 

  30. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  31. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664–24677 (2012)

    Article  ADS  Google Scholar 

  32. Wei, T.C., Barreiro, J.T., Kwiat, P.G.: Hyperentangled Bell-state analysis. Phys. Rev. A 75(R), 060305 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. Pisenti, N., Gaebler, C.P.E., Lynn, T.W.: Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement. Phys. Rev. A 84, 022340 (2011)

    Article  ADS  Google Scholar 

  34. Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012)

    Article  ADS  Google Scholar 

  35. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  36. Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 10, 115201 (2013)

    Article  ADS  Google Scholar 

  37. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum dot spins inside optical microcavities. Opt. Express 22, 6547–6561 (2014)

    Article  ADS  Google Scholar 

  38. Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014)

    Article  ADS  Google Scholar 

  39. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  40. Li, X.H., Ghose, S.: Hyperconcentration for multipartite entanglement via linear optics. Laser Phys. Lett. 11, 125201 (2014)

    Article  ADS  Google Scholar 

  41. Li, X.H., Ghose, S.: Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity. Opt. Express 23, 3550–2562 (2014)

    Article  ADS  Google Scholar 

  42. Li, X.H., Ghose, S.: Hyperentanglement concentration for time-bin and polarization hyperentangled photons. Phys. Rev. A 91, 062302 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  43. Ltkenhaus, N., Calsamiglia, J., Suominen, K.A: Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  44. Calsamiglia, J., Lutkenhaus, N.: Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 67–71 (2001)

    Article  ADS  Google Scholar 

  45. Calsamiglia, J.: Generalized measurements by linear elements. Phys. Rev. A 65, 030301 (2002)

    Article  ADS  Google Scholar 

  46. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense soding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

    Article  ADS  Google Scholar 

  47. Van Houwelingen, J.A.W., Brunner, N., Beveratos, A., Zbinden, H., Gisin, N.: Quantum teleportation with a three-bell-state analyzer. Phys. Rev. Lett. 96, 130502 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  48. Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Lindenthal, M., Walther, P., Zeilinger, A.: Quantum teleportation across the Danube. Nature (London) 430, 849 (2004)

    Article  ADS  Google Scholar 

  49. Pan, J.W., Zeilinger, A.: Greenberger-Horne-Zeilinger-state analyzer. Phys. Rev. A 57, 2208–2211 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  50. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  51. Lu, C.Y., Yang, T., Pan, J.W.: Experimental multiparticle entanglement swapping for quantum networking. Phys. Rev. Lett. 103, 020501 (2009)

    Article  ADS  Google Scholar 

  52. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Greenberger-Horne-Zeilinger state. Opt. Commun. 253, 15–20 (2005)

    Article  ADS  Google Scholar 

  53. Guo, Q., Cheng, L.Y., Wang, H.F., Zhang, S., Yeon, K.H.: Complete N-photon Greenberger-Horne-Zeilinger-state analyzer and its applications to quantum communication. Opt. Commun. 285, 1571–1575 (2012)

    Article  ADS  Google Scholar 

  54. Su, S.L., Zhu, L., Guo, Q., Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Complete Bellstate and Greenberger-Horne-Zeilinger-state nondestructive detection based on simplified symmetry analyzer. Opt. Commun. 285, 4134–4139 (2012)

    Article  ADS  Google Scholar 

  55. Wang, X.W., Zhang, D.Y., Tang, S.Q., Xie, L.J.: Nondestructive Greenberger-Horne- Zeilinger-state analyzer. Quantum Inf. Process 12, 1065–1075 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Lin, X.M., Chen, Z.H., Lin, G.W., Chen, X.D., Ni, B.B.: Optical Bell state and Greenberger-Horne-Zeilinger-state analyzers through the cavity input-output process. Opt. Commun. 282, 3371–3374 (2009)

    Article  ADS  Google Scholar 

  57. Liu, Q., Zhang, M.: Complete and deterministic analysis for spatial-polarization hyperentangled Greenberger-Horne-Zeilinger states with quantum-dot cavity systems. J. Opt. Soc. Am. B 30, 2263–2270 (2013)

    Article  ADS  Google Scholar 

  58. Fan, L.L., Xia, Y., Song, J.: Complete hyperentanglement-assisted multi-photon Greenberger-Horne-Zeilinger states analysis with cross-Kerr nonlinearity. Opt. Commun 317, 102–106 (2014)

    Article  ADS  Google Scholar 

  59. Xia, Y., Chen, Q.Q., Song, J., Song, H.S.: Efficient hyperentangled Greenberger-Horne-Zeilinger states analysis with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 1029–1037 (2012)

    Article  ADS  Google Scholar 

  60. Song, S., Cao, Y., Sheng, Y.B., Long, G.L.: Complete Greenberger-Horne-Zeilinger state analyzer using hyperentanglement. Quantum Inf. Process 12, 381–393 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Zeng, Z., Wang, C., Li, X.H.: Complete N-Qubit GHZ States analysis assisted by frequency degree of freedom. Commun. Theor. Phys 62, 683–688 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Kalamidas, D.: Single-photon quantum error rejection and correction with linear optics. Phys. Lett. A 343, 331–335 (2005)

    Article  ADS  MATH  Google Scholar 

  63. Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11, 085203 (2014)

    Article  ADS  Google Scholar 

  64. Zeng, Z., Wang, C., Li, X.H., Wei, H.: Deterministic arbitrary multi-photon entanglement sharing via noisy channels. Laser Phys. Lett. 12, 015201 (2015)

    Article  ADS  Google Scholar 

  65. Brendel, J., Gisin, N., Tittel, W., Zbinden, H.: Pulsed energy-time entangled twin- photon source for quantum communication. Phys. Rev. Lett 82, 2594 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 11574038, and Fundamental Research Funds for the Central Universities Project under Grant No. CQDXWL-2012-014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xihan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zeng, Z. & Li, X. Complete N-Photon Greenberger-Horne-Zeilinger State Analysis Using Hyperentanglement. Int J Theor Phys 55, 1568–1576 (2016). https://doi.org/10.1007/s10773-015-2794-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2794-9

Keywords

Navigation