Skip to main content
Log in

A Quantum Multi-proxy Blind Signature Scheme Based on Genuine Four-Qubit Entangled State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we propose a multi-proxy blind signature scheme based on controlled teleportation. Genuine four-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. The security analysis shows the scheme satisfies the security features of multi-proxy signature, unforgeability, undeniability, blindness and unconditional security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. William, S.: Cryptography and Network Security: Principles and Practice, 2nd edn. Prentice Hall, New York (2003)

    Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring, pp. 124–134 (1994)

  3. Zeng, G.H., Ma, W.P., Wang, X.M., et al.: Signature scheme based on quantum cryptography. Acta Electron. Sin. 29(8), 1098–1100 (2001)

    Google Scholar 

  4. Lee, H., Hong, C., Kim, H., et al.: Arbitrated quantum signature scheme with message recovey. Phys. Lett. A 321(5–6), 295–300 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Wen, X.J., Liu, Y., Zhang, P.Y.: Digital multi-signature protocol based on teleportation. Wuhan Univ. J. Nat. Sci. 12(1), 29–32 (2007)

    Article  MathSciNet  Google Scholar 

  6. Wen, X.J., Liu, Y., Zhou, N.R.: Secure quantum telephone. Opt. Commun. 275(1), 278–282 (2007)

    Article  ADS  Google Scholar 

  7. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  8. Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  9. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature gainst the forgery attack. Quantum Inf. Process. 12(8), 2655–2699 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Zou, X.F., Qiu, D.W.: Attack and improvements of fair quantum blind signature schemes. Quantum Inf. Process. 12(6), 2071–2085 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Wang, T.Y., Cai, X.Q.: Security of a sessional blind signature based on quantum cryptograph. Quantum Inf. Process. 13(8), 1677–1685 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Wang, T.Y., Cai, X.Q., Ren, Y.L., et al.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)

    Article  ADS  Google Scholar 

  13. Mambo, M, Usuda, K, Okamoto, E.: Proxy signatures for delegating signing operation. In: Proceedings of the 3rd ACM Conference on Computer and Communications Security, pp. 48–57. New Delhi (1996)

  14. Barnum, H., Crepeau, C., Gottesman, D., Smith, A., Tapp, A.: In: Proceedings of the 43th Annual IEEE Symposium on Foundations of Computer Science, pp. 449–458 (2002)

  15. Harn, L.: New digital signature scheme based on logarithm. Electron. Lett. 30 (5), 396–398 (1994)

    Article  Google Scholar 

  16. Wen, X.J., Liu, Y., Sun, Y.: Quantum multi-signature protocol based on teleporation. Z. Naturforschung 62a, 147–151 (2007)

    ADS  MATH  Google Scholar 

  17. Zuo, H.J., Zhang, K., Song, T.T.: Security analysis of quantum multi-signature protol based on teleportation. Quantum Inf. Process. 12(7), 2343–2353 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Tian, Y., Chen, H., Ji, S.F., et al.: A broadcasting multiple blind signature scheme based on quantum teleportation. Opt. Quantum Electron. 46(6), 769–777 (2014)

    Article  Google Scholar 

  19. Cao, H.J., Wang, H.S., Li, P.F.: Quantum proxy multi-signature scheme using genuinely entangled six qubits state. Int. J. Theor. Phys. 52(4), 1188–1193 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cao, H.J., Huang, J., Yu, Y.F., et al.: A quantum proxy signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys. 53(9), 3095–3100 (2014)

    Article  MATH  Google Scholar 

  21. Li, M.L., Liu, J.J., Hong, W.N.: Quantum information splitting of a single-qubit via genuine four-qubit entangled states. Acta Sin. Quantum Opt. 19(2), 141–145 (2013)

    Google Scholar 

  22. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  23. Mayers, D.: Unconditional security in quantum cryptography. J. Assoc.: Comput. Math. 48(1), 351–406 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Inamon, H., Lutkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41(3), 599–627 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos.61402275, 61273311, 61202317), the Natural Science Foundation of Shaanxi Province (Grant No.2015JM6263), Scientific Research Plan Projects of Shaanxi Education Department(Grant No.2012JK1003), and the Fundamental Research Funds for the Central Universities(Grant No.GK201402004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, JH., Zhang, JZ. & Li, YP. A Quantum Multi-proxy Blind Signature Scheme Based on Genuine Four-Qubit Entangled State. Int J Theor Phys 55, 809–816 (2016). https://doi.org/10.1007/s10773-015-2719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2719-7

Keywords

Navigation