Skip to main content
Log in

Quantum Correlations of Two Relativistic Spin-\(\frac {1}{2}\) Particles Under Noisy Channels

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the quantum correlation dynamics of bipartite spin-\(\frac {1}{2}\) density matrices for two particles under Wigner rotations induced by Lorentz transformations which is transmitted through noisy channels. We compare quantum entanglement, geometric discord(GD), and quantum discord (QD) for bipartite relativistic spin-\(\frac {1}{2}\) states under noisy channels. We find out QD and GD tend to death asymptotically but a sudden change in the decay rate of the entanglement occurs under noisy channels. Also, bipartite relativistic spin density matrices are considered as a quantum channel for teleportation one-qubit state under the influence of depolarizing noise and compare fidelity for various velocities of observers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Goyal, S.K., Banerjee, S., Ghosh, S.: Phys. Rev. A 85, 012327 (2012)

    Article  ADS  Google Scholar 

  3. Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  4. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Mazaher, A., Rau, A.R.P., Alber, G.: Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  6. Dakic, B., Vedral, V., Brukner, C.: Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  7. Girolami, D., Adesso, G.: Phys. Rev. A 83, 052108 (2011)

    Article  ADS  Google Scholar 

  8. Jafarizadeh, M.A., Mahdian, M.: Int. J. Quantum Inf. (IJQI) v(3), 517–528 (2010)

    Article  Google Scholar 

  9. Jafarizadeh, M.A., Mahdian, M.: Quantum Inf. Process (2010). doi:10.1007/s11128-010-0206-X

  10. Jafarizadeh, M.A., Mahdian, M.: Quantum Inf. Process (2010). doi:10.1007/s11128-011-0289-Z

  11. lamata, L., Leon, J., Salgado, D.: Phys. Rev. A 73, 052325 (2006)

    Article  ADS  Google Scholar 

  12. Peres, A., Scudo, P.F., Terno, D.R.: Phys. Rev. Lett. 88(23) (2002)

  13. Ahn, D., Lee, H.J., Moon, Y.H., Hwang, S.W.: Relativistic entanglement and Bell?s inequality. Phys. Rev. A 67, 012103 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  14. Siomau, M., Fritzsche, S.: Phys. J. D 60, 397–403 (2010)

    ADS  Google Scholar 

  15. Moy, G.M., Hope, J.J., Savage, C.M.: Phys. Rev. A 59, 667–675 (1999)

    Article  ADS  Google Scholar 

  16. Kraus, K.: States, Effects and Operations: Fundamen-tal Notions of Quantum Theory. Springer-Verlag, Berlin (1983)

    Book  Google Scholar 

  17. Kraus, K.: States, Effects and Operations. Spring-Verlag, Berlin (1983)

    MATH  Google Scholar 

  18. Davies, E.B.: Quantum Theory of Open Systems. Academic, London (1976)

    MATH  Google Scholar 

  19. Preskill, J.: Lecture notes: Information for Physics 219/Computer Science 219, Quantum Computation, www.theory.caltech.edu/people/preskill/ph229.5

  20. Kraus, K.: General state changes in quantum theory. Ann. Phys. 64(2), 311–335 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Choi, M.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bouda, J., Buzek, V.: Purification and correlated measurements of bipartite mixed states. Phys. Rev. A 65, 034304 (2003)

    Article  ADS  Google Scholar 

  23. Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information, vol. 2. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  24. Lindblad, G.: Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  25. Streltsov, A., Kampermann, H., Bruß, D.: PRL 107, 170502 (2011)

    Article  ADS  Google Scholar 

  26. Yu, T., Eberly, J.H.: Phys. Rev. Lett. 97, 140403 (2006)

    Article  ADS  Google Scholar 

  27. Chun, M., Ming, Y., Zhuo-Liang, C.: Commun. Theor. Phys.(Beijing, China) 53, 489–495 (2010)

    Article  ADS  Google Scholar 

  28. Oh, S., Lee, S., Lee, H.-W.: Phys. Rev. A 66, 22316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  29. Yan-Ling, L., Mao-Fa, F., Xing, X., Chao, W., Li-Zhen, H.: Chin. Phys. B 19(6), 060306 (2010)

    Article  Google Scholar 

  30. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  31. Gyongyosi, L., Imre, S.: Properties of the quantum channel. arXiv:1208.1270 [quant-ph]

  32. Dodd, P.J., Halliwell, J.J.: Phys. Rev. A 69, 052105 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  33. Bennett, C.H., et al.: Teleportation an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Hu, M.-L.: Environment-induced decay of teleportation fidelity of the one-qubit state. Phys. Lett. A 375(21) (2011)

  35. Weinberg, S.: The Quantum Theory of Fields I. Cambridge University Press, NY (1995)

    Book  Google Scholar 

  36. Wigner, E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149 (1939)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Andersson, E., Cresser, J.D., Hall, M.J.W.: Finding the Kraus decomposition from a master equation and vice versa. J. Mod. Opt. (2007)

  38. Mahdian, M., Mehrabpour, H.: Nakajima-Zwanzig and time-convoulutionless master equation for a one-qubit system in a non-markovian layered environment. J. Theor. Phys. (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mahdian.

Appendix A

Appendix A

Wigner representation for spin-\(\frac {1}{2}\): It follows [35] that the effect of an arbitrary Lorentz transformation unitarily implemented as U(Λ) on single-particle states is as follow

$$\begin{array}{@{}rcl@{}} U({\Lambda})(|p,\sigma\rangle)=\sqrt{\frac{({\Lambda} p)^{0}}{p^{0}}}{\Sigma}_{\sigma^{\prime}}D_{\sigma^{\prime} \sigma}(W({\Lambda},p))(|{\Lambda} p,\sigma^{\prime}\rangle) \end{array} $$
(7.55)

where

$$W({\Lambda},p)=L^{-1}({\Lambda} p){\Lambda} L(p)$$

is the Wigner rotation [36]. The Wigner rotation is an element of the spacial rotation group S O(3) or subgroup of the homogeneous Lorentz group since it leaves the rest momentum k ν unchanged:

$$W^{\mu}_{\nu}k^{\nu}=k^{\mu}.$$

This subgroup is called (Wigner's) little group. We will consider two reference frames in this work: one is the rest frame S and the other is the moving frame \(S^{\prime }\) in which a particle whose four-momentum p in S is seen as boosted with the velocity \( \vec {\upsilon }.\) By setting the boost and particle moving directions in the rest frame to be \(\hat {\upsilon }\) with \(\hat {e}\) as the normal vector in the boost direction and \(\hat {p_{1,(2)}}\), respectively, and \(\hat {n}=\hat {e}\times \hat {p_{1,(2)}}\) the Wigner representation for spin-\(\frac {1}{2}\) is found as [13],

$$\begin{array}{@{}rcl@{}} D^{\frac{1}{2}}(W({\Lambda},p_{1,(2)}))=\cos \frac{\alpha_{p_{1(2)}}}{2}+i\sin\frac{\alpha_{p_{1(2)}}}{2}(\vec{\sigma}.\hat{n}), \end{array} $$
(7.56)

where

$$\begin{array}{@{}rcl@{}} \cos\frac{\alpha_{p_{1(2)}}}{2}=\frac{\cosh\frac{\alpha}{2}\cosh\frac{\delta}{2}+\sinh\frac{\alpha}{2}\sinh\frac{\delta}{2}(\hat{e}.\hat{p}_{1(2)})}{\sqrt{\left[\frac{1}{2}+\frac{1}{2}\cosh\alpha\cosh\delta+\frac{1}{2}\sinh\alpha\sinh\delta(\hat{e}.\hat{p}_{1(2)})\right]}} \end{array} $$
(7.57)
$$\begin{array}{@{}rcl@{}} \sin\frac{\alpha_{p_{1(2)}}}{2}\hat{n}=\frac{\sinh\frac{\alpha}{2}\sinh\frac{\delta}{2}(\hat{e}\times\hat{p}_{1(2)})}{\sqrt{\left[\frac{1}{2}+\frac{1}{2}\cosh\alpha\cosh\delta+\frac{1}{2}\sinh\alpha\sinh\delta(\hat{e}.\hat{p}_{1(2)})\right]}} \end{array} $$
(7.58)

and

$$\cosh\alpha=\gamma=\frac{1}{\sqrt{1-\beta^{2}}},\,\,\, \cosh\delta=\frac{E}{m},\,\,\, \beta=\frac{\upsilon}{c}$$
$$\left( \cos\frac{\alpha_{p_{1(2)}}}{2}\right)^{2}+\left( \sin\frac{\alpha_{p_{1(2)}}}{2}\hat{n}\right)^{2}=1.$$

Note, in this paper we consider the boost in the x direction and the momentum vector in the z direction. Then after some calculation we get the Wigner representation \(D^{\frac {1}{2}}(W({\Lambda },p_{1,(2)}))\) for spin-\(\frac {1}{2}\) as:

$$\begin{array}{@{}rcl@{}} D^{\frac{1}{2}}(W({\Lambda},p_{1,(2)}))=\left( \begin{array}{cc} \cos\frac{\alpha_{p_{1(2)}}}{2}& -\sin\frac{\alpha_{p_{1(2)}}}{2} \\ \sin\frac{\alpha_{p_{1(2)}}}{2}& \cos\frac{\alpha_{p_{1(2)}}}{2} \\ \end{array} \right). \end{array} $$
(7.59)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdian, M., Mojaveri, B., Dehghani, A. et al. Quantum Correlations of Two Relativistic Spin-\(\frac {1}{2}\) Particles Under Noisy Channels. Int J Theor Phys 55, 678–697 (2016). https://doi.org/10.1007/s10773-015-2705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2705-0

Keywords

Navigation