Skip to main content
Log in

Constructions of Asymmetric Quantum Alternant Codes

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Asymmetric quantum error-correcting codes (AQCs) have been proposed to deal with the significant asymmetry in many quantum channels, which may have more flexbility than general quantum error-correcting codes (QECs). In this paper, we construct AQCs based on Alternant codes. Firstly, we propose a new subclass of Alternant codes and combine them with BCH codes to construct AQCs. Then we construct AQCs based on series of nested pairs of subclasses of Alternant codes such as nested Goppa codes. As an illustrative example, we get three [[55, 6, 19/4]], [[55, 10, 19/3]], [[55, 15, 19/2]] AQCs from the well known [55, 16, 19] binary Goppa code. At last, we get asymptotically good binary expansions of quantum GRS codes, which are quantum generalizations of Retter’s classical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliferis, P., Preskill, J.: Fault-tolerant quantum computation against biased noise. Phys. Rev. A 78(052), 331 (2008)

    Google Scholar 

  2. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    Article  MathSciNet  Google Scholar 

  3. Ashikhmin, A., Litsyn, S., Tsfasman, M.A.: Asymptotically good quantum codes. Phys. Rev. A 032(3), 311 (2001)

    Google Scholar 

  4. Bezzateev, S.V., Shekhunova, N.A.: Subclass of binary Goppa codes with minimal distance equal to the design distance. IEEE Trans. Inf. Theory 41(2), 554–555 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brooks, P., Preskill, J.: Fault-tolerant quantum computation with asymmetric Bacon-Shor codes. Phys. Rev. A 032(3), 310 (2013)

    Google Scholar 

  6. Calderbank, A.R., Rains, E.M., Shor, P., Sloane, N.J.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cannon, J., Bosma, W.: Handbook of MAGMA functions. Edition 2.13, 1–4328 (2006)

    Google Scholar 

  8. Chien, R., Choy, D.: Algebraic generalization of BCH-Goppa-Helgert codes. IEEE Trans. Inf. Theory 21(1), 70–79 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Evans, Z., Stephens, A., Cole, J., Hollenberg, L.: Error correction optimisation in the presence of x/z asymmetry. Preprint arXiv: 0709.3875 (2007)

  10. Ezerman, M.F., Jitman, S., Ling, S., Pasechnik, D.V.: CSS-like constructions of asymmetric quantum codes. IEEE Trans. Inf. Theory 59(10), 6732–6754 (2013)

    Article  MathSciNet  Google Scholar 

  11. Ezerman, M.F., Ling, S., Sole, P.: Additive asymmetric quantum codes. IEEE Trans. Inf. Theory 57(8), 5536–5550 (2011)

    Article  MathSciNet  Google Scholar 

  12. Frederic Ezerman, M., Jitman, S., Mao Kiah, H., Ling, S.: Pure asymmetric quantum MDS codes from CSS construction: A complete characterization. Int. J. Quantum Inf. 11(3), 1350,027 (2013)

    Article  Google Scholar 

  13. Goppa, V.D.: A new class of linear correcting codes. Probl. Peredachi. Inf. 6(3), 24–30 (1970)

    MathSciNet  MATH  Google Scholar 

  14. Goppa, V.D.: A rational representation of codes and (l, g)-codes. Probl. Peredachi. Inf. 7(3), 41–49 (1971)

    MathSciNet  MATH  Google Scholar 

  15. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at, URL http://www.codetables.de. Accessed on 2013 (2007)

  16. Ioffe, L., Mézard, M.: Asymmetric quantum error-correcting codes. Phys. Rev. A 75(032), 345 (2007)

    Google Scholar 

  17. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. La Guardia, G.G.: Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes. Quantum Inf. Process. 11(2), 591–604 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. La Guardia, G.G.: Asymmetric quantum codes: new codes from old. Quantum Inf. Process. 12(8), 2771–2790 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Loeloeian, M., Conan, J.: A [55,16,19] binary Goppa code (corresp.) IEEE Trans. Inf. Theory 30(5), 773–773 (1984)

    Article  MathSciNet  Google Scholar 

  21. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. The Netherlands: North-Holland, Amsterdam (1981)

    Google Scholar 

  22. Moreno, C.J., Moreno, O.: Exponential sums and Goppa codes: II. IEEE Trans. Inf. Theory 38(4), 1222–1229 (1992)

    Article  MATH  Google Scholar 

  23. Retter, C.T.: The average binary weight-enumerator for a class of generalized Reed-Solomon codes. IEEE Trans. Inf. Theory 37(2), 346–349 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sarvepalli, P.K., Klappenecker, A., Rötteler, M.: Asymmetric quantum codes: constructions, bounds and performance. Proc. Roy. Soc. A 465, 1645–1672 (2009)

    Article  ADS  MATH  Google Scholar 

  25. Steane, A.: Multiple-particle interference and quantum error correction. Proc. Roy. Soc. A 452, 2551–2577 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Van der Vlugt, M.: The true dimension of certain binary Goppa codes. IEEE Trans. Inf. Theory 36(2), 397–398 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Wang, L., Feng, K., Ling, S., Xing, C.: Asymmetric quantum codes: characterization and constructions. IEEE Trans. Inf. Theory 56(6), 2938–2945 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 61170321, the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20110092110024 and the Graduate Research Innovation Plans of Colleges and Universities in Jiangsu Province 2013 under Grant No. CXZZ13_0105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanwu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Chen, H. & Xu, J. Constructions of Asymmetric Quantum Alternant Codes. Int J Theor Phys 55, 313–328 (2016). https://doi.org/10.1007/s10773-015-2663-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2663-6

Keywords

Navigation