Skip to main content
Log in

Enhancing Atomic Entanglement in a Common Reservoir by Weak Measurement and its Reversal

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The three two-level atoms, initially prepared in like-W state, interact with a common bosonic reservoir. To suppress environment decoherence and obtain much better entanglement, we firstly perform weak measurement on these atoms before they pass the reservoir, and then, when they have experienced the decoherence environment, the receiver carry out a quantum reversal on all atoms. The results show both the tripartite and bipartite entanglement can be enhanced and the post-reversal measurement is more obvious to promote atomic entanglements than the weak measurement. Increasing the strength of reversal measurement can always improve entanglement. As a price, the success probability decreases with the much greater measure strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim, Y.H., Kulik, S.P., Shih, Y.H.: Phys. Rev. Lett. 86, 1370 (2001)

    Article  ADS  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Hillery, M., Bužek, V., Berthiaume, A.: Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. Giovannetti, V., Lloyd, S., Maccone, L.: Nature Photon. 5, 222 (2011)

    Article  ADS  Google Scholar 

  5. Mazzola, L., Maniscalco, S., Piilo, J., Suominen, K.A., Garraway, B.M.: Phys. Rev. A 79, 042302 (2009)

    Article  ADS  Google Scholar 

  6. Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Phys. Rev. A 81, 052107 (2010)

    Article  ADS  Google Scholar 

  7. Shor, P.W.: Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  8. Steane, A.M.: Phys. Rev. Lett. 77, 793 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Sainz, I., Bjork, G.: Phys. Rev. A 77, 052307 (2008)

    Article  ADS  Google Scholar 

  10. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  11. Dong, R., et al.: Nat. Phys. 4, 919 (2008)

    Article  Google Scholar 

  12. Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Nature (London) 423, 417 (2003)

    Article  ADS  Google Scholar 

  13. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  14. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Phys. Rev. Lett. 77, 2818 (1996)

    Article  ADS  Google Scholar 

  15. Feng, X.L., Gong, S.Q., Xu, Z.Z.: Phys. Lett. A 271, 44 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. Pan, J.W., Simon, C, Brukner, C, Zeilinger, A: Nature 410, 6832 (2001)

    Article  Google Scholar 

  17. Zanardi, P., Rasetti, M.: Phys. Rev. Lett. 79, 3306 (1997)

    Article  ADS  Google Scholar 

  18. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  19. Facchi, P., Lidar, D.A., Pascazio, S.: Phys. Rev. A 69, 032314 (2004)

    Article  ADS  Google Scholar 

  20. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)

    Article  ADS  Google Scholar 

  21. Sun, Q., Al-Amri, M., Zubairy, M.S.: Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  22. Sun, Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Phys.Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

  23. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  24. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  25. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404–1–140404-4 (2004)

    ADS  Google Scholar 

  26. Eberly, J.H., Yu, T.: The end of an entanglement. Science 316, 555–557 (2007)

    Article  Google Scholar 

  27. Bellomo, B., Franco, R.L., Compagno, G.: Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

  28. Buscemi, F., Bordone, P.: Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise. Phys. Rev. A 87, 042310 (2013)

    Article  ADS  Google Scholar 

  29. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61178012, the Natural Science Foundation of Heze University of China under Grant No. XY12KJ01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-hai Zhang.

Additional information

Conflict of interests

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yh., Xia, Yj. Enhancing Atomic Entanglement in a Common Reservoir by Weak Measurement and its Reversal. Int J Theor Phys 55, 137–146 (2016). https://doi.org/10.1007/s10773-015-2643-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2643-x

Keywords

Navigation