Skip to main content
Log in

A Semiclassical Condition for Chaos Based on Pesin Theorem

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A semiclassical method to determine if the classical limit of a quantum system shows a chaotic behavior or not based on Pesin theorem, is presented. The method is applied to a phenomenological Gamow–type model and it is concluded that in the classical limit the dynamics exhibited by its effective Hamiltonian is chaotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Given two partitions A and B the partition AB is \(\{a_{i}\cup b_{j}: a_{i}\in A, b_{j}\in B\}\). That means AB is a refinement of A and B. Given a semigroup of preserving measure transformations T t , T j is the inverse of T j , i.e. \(T^{-j}=T_{j}^{-1}\).

  2. By “\(\mathcal {A}_{q}\) tends to \(\mathcal {A}_{cl}\)” we mean that in the classical limit, \(\hbar \rightarrow 0\), the quassiclassical algebra \(\mathcal {A}_{q}\) tends to the commutative algebra of functions defined over Γ, i.e. \(\mathcal {A}_{cl}\), where \(\hbar \) is the parameter of deformation quantization.

  3. The classical algebra \(\mathcal {A}_{cl}\) of S c l is the limit of the quasiclassical \(\mathcal {A}_{q}\) of S when \(\hbar \rightarrow 0\), i.e. \(lim_{\hbar \rightarrow 0}\mathcal {A}_{q} =\mathcal {A}_{cl}\).

  4. For instance, discretized evolutions are used in Hamiltonians with a time-dependent potential. In such cases, it is common to take \(\hat {U}(n)=\hat {F}(\tau n)\), where \(\hat {f}\) is the Floquet operator and τ is the periodicity of the potential.

  5. In an irreversible process effective Hamiltonians are commonly used to describe open quantum systems, i.e. a quantum system in interaction with its environment. In general, it is not a self-adjoint operator, \(\hat {H}\neq \hat {H}^{\dag }\).

  6. R n is well known as the topological entropy of B(−n). Roughly speaking, R n “measures” the degree of mixing of a dynamical system as it evolves in time. Typically, in a fully chaotic system the formation of fractal structures in a chaotic sea can produce numerous sets B(k 0,k 1,...,k n ) and therefore an increasing of R n .

  7. For instance, if R n is uniformly bounded for all n, then from (3) it follows that \(\sup _{Q}\{...\}=0\). From (4) we obtain \({\int }_{\!\!{\Gamma }}\left [ {\sum }_{\sigma _{i}(\phi )>0}\sigma _{i}(\phi )\right ] d^{2(N+1)}\phi = 0\), which implies that σ i (ϕ)=0 for all i. Therefore, in such case there is no chaotic behavior.

  8. From (12), it follows that if \(n\gg \frac {t_{R}}{\alpha }\), then \(\hat {I}_{A_{k_{n}}}(n)\simeq \alpha _{A_{k_{n}}}(0,0)|0\rangle \langle 0|\) is diagonal. Thus, \({\prod }_{j=0}^{n}\hat {I}_{A_{k_{j}}}(j)=\hat {I}_{A_{k_{0}}}(0).\hat {I}_{A_{k_{1}}}(1)...\hat {I}_{A_{k_{n}}}(n) \simeq \hat {I}_{A_{k_{0}}}(0).\hat {I}_{A_{k_{1}}}(1)...\alpha _{A_{k_{n}}}(0,0)|0\rangle \langle 0|=\left ({\prod }_{j=0}^{n}\alpha _{A_{k_{j}}}(0,0)\right )|0\rangle \langle 0|\) is diagonal, regardless if operators \(\hat {I}_{A_{k_{0}}}(0), \hat {I}_{A_{k_{1}}}(1),...,\hat {I}_{A_{k_{n-1}}}(n-1)\) are diagonals or not.

  9. Typically, the phase space of a non-integrable chaotic system is a compact manifold. If motion is regular and integrable, the phase space can be taken as a torus.

  10. If \(f(x)=x\log (x)\), then by definition f(0)=0.

References

  1. Alicki, R., Lozinski, A., Pakonski, P., Zyczkowski, K.: Quantum dynamical entropy and decoherence rate. J. Phys. A 37, 5157–5172 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Slomczynski, W., Zyczkowski, K.: Quantum chaos: an entropy approach. J. Math. Phys. 35, 5674–5700 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Slomczynski, W., Zyczkowski, K.: Mean dynamical entropy of quantum maps on the sphere diverges in the semiclassical limit. Phys. Rev. Lett. 80, 1880–1883 (1998)

    Article  ADS  Google Scholar 

  4. Zyczkowski, K., Wiedemann, H., Slomczynski, W.: How to generalize Lyapunov exponents for quantum mechanics. Vistas Astron. 37, 153–156 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. Cucchietti, F.M., Dalvit, D.A.R., Paz, J.P., Zurek, W.H.: Decoherence and the Loschmidt Echo. Phys. Rev. Lett. 91, 210403 (2003)

    Article  ADS  Google Scholar 

  6. Cucchietti, F.M., Pastawski, H.M., Jalabert, R.A.: Universality of the Lyapunov regime of the Loschmidt echo. Phys. Rev. B 70, 035311 (2004)

    Article  ADS  Google Scholar 

  7. Monteoliva, D., Paz, J.P.: Decoherence and the Rate of Entropy Production in Chaotic Quantum Systems. Phys. Rev. Lett. 85, 3373 (2000)

    Article  ADS  Google Scholar 

  8. Monteoliva, D., Paz, J.P.: Decoherence in a classically chaotic quantum system: Entropy production and quantum-classical correspondence. Phys. Rev. E. 64, 056238 (2001)

    Article  ADS  Google Scholar 

  9. Bellot, G., Earman, J.: Studies in History and Philosophy of Modern Physics. Chaos out of order: Quantum mechanics, the correspondence principle and chaos 28, 147–182 (1997)

    Google Scholar 

  10. Berkovitz, J., Frigg, R., Kronz, F.: The Ergodic Hierarchy Randomness and Hamiltonian Chaos. Stud. Hist. Philos. Mod. Phys. 37, 661–691 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Berry, M.: Quantum chaology, not quantum chaos. Phys. Scr. 40, 335–336 (1989)

    Article  ADS  MATH  Google Scholar 

  12. Castagnino, M., Lombardi, O.: Towards a definition of the quantum ergodic hierarchy: Ergodicity and mixing. Phys. A 388, 247–267 (2009)

    Article  MathSciNet  Google Scholar 

  13. Gomez, I., Castagnino, M.: Towards a definition of the Quantum Ergodic Hierarchy: Kolmogorov and Bernoulli systems. Phys. A 393, 112–131 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gomez, I., Castagnino, M.: On the classical limit of quantum mechanics, fundamental graininess and chaos: Compatibility of chaos with the correspondence principle, Chaos. Solitons Fractals 68, 98–113 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. Stockmann, H.: Quantum Chaos: An Introduction, page numbers. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  16. Haake, F.: Quantum Signatures of Chaos, page numbers. Springer-Verlag, Heidelberg (2001)

    Book  Google Scholar 

  17. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics, page numbers. Springer Verlag, New York (1990)

    Book  Google Scholar 

  18. Casati, G., Chirikov, B.: Quantum Chaos: between order and disorder, page numbers. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  19. Tabor, M.: Chaos and Integrability in Nonlinear Dynamics: An Introduction, page numbers. Wiley, New York (1988)

    Google Scholar 

  20. Omnès, R.: The Interpretation of Quantum Mechanics, vol. 288. Princeton University, Princeton (1994)

    Google Scholar 

  21. Laura, R., Castagnino, M.: Functional approach for quantum systems with continuous spectrum. Phys. Rev. E 57, 3948 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  22. Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics (Applied Mathematical Sciences), vol. 304. Springer, Berlin (2010)

    Google Scholar 

  23. Pesin, Y.: Characteristic exponents and smooth ergodic theory. Russ. Math. Surv. 32, 55–114 (1977)

    Article  MathSciNet  Google Scholar 

  24. Young, L.: Entropy, p 283. Princeton University Press, Princeton (2003)

    Google Scholar 

  25. Hillery, M., O’Connell, R., Scully, M., Wigner, E.: Distribution functions in physics: Fundamentals. Phys. Rep. 106, 121–167 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  26. Dito, G., Sternheimer, D.: Deformation quantization: genesis, development and metamorphosis. IRMA Lect. Math. Theor. Phys. 1, 9–54 (2002)

    MathSciNet  Google Scholar 

  27. Bayern, F., Flato, M., Fronsdal, M., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. II, Physical applications. Ann. Phys. 110, 111–151 (1978)

    ADS  Google Scholar 

  28. Antoniou, I., Suchanecki, Z., Laura, R., Tasaki, S.: Intrinsic irreversibility of quantum systems with diagonal singularity. Phys. A 241, 737–772 (1997)

    Article  Google Scholar 

  29. Gadella, M., Pronko, G.: Fortschritte der Physik The Friedrichs model and its use in resonance phenomena, 59, 795–859 (2011)

  30. Castagnino, M., Fortin, S.: New bases for a general definition for the moving preferred basis. Mod. Phys. Lett. A 26, 2365–2373 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Ordonez, G., Kim, S.: Complex collective states in a one-dimensional two-atom system. Phys. Rev. A 70, 032702 (2004)

    Article  ADS  Google Scholar 

  32. Bohm, A.: Quantum mechanics, foundations and applications, pp 549–563. Springer Verlag, Berlin (1986)

    Book  MATH  Google Scholar 

  33. Gilary, I., Fleischer, A., Moiseyev, N.: Calculations of time-dependent observables in non-Hermitian quantum mechanics: The problem and a possible solution. Phys. Rev. A 72, 012117 (2005)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper was supported partially by the CONICET (National Research Council, Argentina), the IFIR (Instituto de F´ısica de Rosario, Argentina), the IFLP (Instituto de Fsica de La Plata, Argentina) and Universidad de Buenos Aires, Argentina.

The authors would like to acknowledge the anonymous reviewer for helpful comments on the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Gomez.

Appendices

Appendix A: The Classical Quantity μ(B(k 0,k 1,...,k n )) Expressed as a Quantum Mean Value

In order to evaluate the KS entropy, we have to generate the following partition

$$\begin{array}{@{}rcl@{}} B(-n)= \bigvee_{j=0}^{n} T^{-j} Q = \left\{ \bigcap_{j=0}^{n} T^{-j} A_{k_{j}} : A_{k_{j}} \in Q \right\}, \end{array} $$

If \(B(k_{0},k_{1},...,k_{n})=\bigcap _{j=0}^{n} T^{-j} A_{k_{j}}\) is a generic element of B(−n), then the measure of B(k 0,k 1,...,k n ) is

$$\begin{array}{@{}rcl@{}} &\mu(B(k_{0},k_{1},...,k_{n}))=\mu\left(\bigcap_{j=0}^{n} T^{-j} A_{k_{j}}\right)={\int}_{\!\!\bigcap_{j=0}^{n} T^{-j} A_{k_{j}}}d^{2(N+1)}\phi= {\int}_{\!\!{\Gamma}} I_{\bigcap_{j=0}^{n} T^{-j} A_{k_{j}}}(\phi) d^{2(N+1)}\phi\\ &={\int}_{\!\!{\Gamma}}{\prod}_{j=0}^{n} I_{A_{k_{j}}}(T^{j}\phi) d^{2(N+1)}\phi= \left\langle{\prod}_{j=0}^{n}I_{A_{k_{j}}}\circ T^{j}(\phi),I(\phi)\right\rangle= \left\langle symb\left({\prod}_{j=0}^{n}\widehat{I_{A_{k_{j}}}\circ T^{j}}\right),symb(\hat{I})\right\rangle \\ &=\left({\prod}_{j=0}^{n}\widehat{I_{A_{k_{j}}}\circ T^{j}}|\hat{I}\right)=\left({\prod}_{j=0}^{n}\hat{I}_{A_{k_{j}}}(j) |\hat{I}\right), \end{array} $$
(22)

where we have used the following properties:

  • The characteristic function of an intersection of sets is the product of the characteristic functions of each set.

  • If T is bijective, then \(I_{T^{-j}A_{k_{j}}}(\phi )= I_{A_{k_{j}}}(T^{j}\phi )\).

  • If \(\hbar \approx 0\), then \(symb\left ({{\prod }_{j}^{n}}\hat {f}_{j}\right )(\phi ){\simeq {\prod }_{j}^{n}}f_{j}(\phi )\), where we have neglected terms of order \(\mathcal {O}(\hbar )\)). This property is the generalization of (5) for a product of n functions f i .

  • \(\widehat {I_{A_{k_{j}}}\circ T^{j}}=\hat {I}_{A_{k_{j}}}(j)=\hat {U}(j)\hat {I}_{A_{k_{j}}}(0)\hat {U}(j)^{\dag }\), where \(\hat {U}(j)=e^{-\frac {i}{\hbar }\hat {H}\alpha j}\) is the evolution operator and α is a real parameter which defines the time steps. This property is a consequence of the formula (6).

Appendix B: An Expansion for Operators \(\hat {I}_{A_{k_{j}}}\)

We consider a Hamiltonian of the form

$$\begin{array}{@{}rcl@{}} \hat{H}=\sum\limits_{r} z_{r} \vert r\rangle\langle\widetilde{r}|, \end{array} $$

where z r =R e(z r )+i I m(z r ) are complex eigenvalues and \(\{\vert r\rangle \},\{\langle \widetilde {s}|\}\) are its two sets of eigenvectors, left and righ respectively [33]. Then we have

$$\begin{array}{@{}rcl@{}} \hat{I}_{A_{k_{j}}}(0)=\sum\limits_{r,s}\alpha_{A_{k_{j}}}(r,s)\vert r\rangle\langle \widetilde{s}|. \end{array} $$

Therefore,

$$\begin{array}{@{}rcl@{}} &\hat{I}_{A_{k_{j}}}(j)=e^{-\frac{i}{\hbar}\hat{H} \alpha j} \left({\sum}_{r,s}\alpha_{A_{k_{j}}}(r,s) \vert r \rangle\langle \tilde {s} \vert\right)e^{\frac{i}{\hbar}\hat{H}^{\dag} \alpha j}= \\ &e^{-(\frac{i}{\hbar} {\sum}_{p} z_{p} \vert p \rangle\langle \widetilde{p}|)\alpha j}\left({\sum}_{r,s}\alpha_{A_{k_{j}}}(r,s) \vert r \rangle\langle \widetilde{s}| \right) e^{(\frac{i}{\hbar}{\sum}_{q} z_{q}^{\ast} \vert q \rangle\langle \widetilde{q}|)\alpha j} \\ &={\sum}_{p}{\sum}_{q}\alpha_{A_{k_{j}}}(p,q)e^{(-\frac{i}{\hbar}z_{p})\alpha j}e^{(\frac{i}{\hbar}z_{q}^{\ast})\alpha j}\vert p\rangle\langle\widetilde{q}|, \end{array} $$
(23)

where we have used the exponential of an operator (\(e^{\hat {A}}={\sum }_{k=0}^{\infty } \frac {\hat {A}^{k}}{k!}\)) and the orthogonal relations of the projectors \(\vert r \rangle \langle \widetilde {s} \vert \), that is

$$\begin{array}{@{}rcl@{}} &(\vert r \rangle\langle \widetilde {r} \vert)^{k}=\vert r \rangle\langle \widetilde {r} \vert , \,\ and \\ &\langle \widetilde {s} |r\rangle=0 \,\,\,\,\, if \,\,\,\,\, r\neq s. \end{array} $$
(24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, I., Losada, M., Fortin, S. et al. A Semiclassical Condition for Chaos Based on Pesin Theorem. Int J Theor Phys 54, 2192–2203 (2015). https://doi.org/10.1007/s10773-014-2437-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2437-6

Keywords

Navigation