Skip to main content
Log in

Green’s Functions at Exceptional Points

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Green’s function is an essential tool for the description of scattering. Spectral singularities such as exceptional points have a very specific effect upon the structure of Green’s functions. It is well known that the coalescence of two eigenvalues gives rise to a pole of second order in addition to the usual first order pole. The present paper describes the general patterns of Green’s functions at exceptional points of arbitrary order. The higher orders of the pole terms as well as their respective coefficients - being matrices - are presented in terms of the underlying Hamiltonian. For the coalescence of three eigenvalues this appears to be of immediate physical interest while the coalescence of four or more levels is still awaiting experimental realisation in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. I am indebted to Dr Uwe Guenther who pointed out to me these references

  2. As our interest is focussed on EPs the continuous spectrum is not explicitly indicated.

References

  1. Newton, R.G.: Scattering of waves and particles. McGraw Hill, New York (1982)

    Book  MATH  Google Scholar 

  2. Mostafazadeh, A.: Spectral singularities of complex potentials and infinite reflection and transmission coefficients at real energies. Phys. Rev. Lett. 102, 220402 (2009)

    Article  ADS  Google Scholar 

  3. Heiss, W.D.: The physics of exceptional points. J. Phys. A: Math. Theor. 45, 444016 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  4. Hernandez, E., Jauregui, A., Mondragon, A.: Degeneracies of resonances in a double well barrier. J. Phys. A: Math. Theor. 33, 4507 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Heiss, W.D., Wunner, G.: Fano-Feshbach resonances in two-channel scattering around exceptional points. Eur. Phys. J. D 68, 284 (2014)

    Article  ADS  Google Scholar 

  6. Heiss, W.D., Cartarius, H., Wunner, G., Main, J.: Spectral singularities in PT-symmetric Bose-Einstein condensates. J. Phys. A: Math. Theor. 46, 275307 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  7. Demange, G., Graefe, E.-M.: Signatures of three coalescing eigenfunctions. J. Phys. A: Math. Theor 45, 025303 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  8. Baumgärtel, H.: Analytic Perturbation Theory for Matrices and Operators. Birkhäuser Verlag, Basel (1985)

    MATH  Google Scholar 

  9. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of Linear Operators (I). Birkhäuser Verlag, Basel (1990)

    Book  MATH  Google Scholar 

  10. Keldysh, M.V.: On the completeness of the eigenfunctions of some non-selfadjoint linear operators. Russ. Math. Surv. 26 (1971). see Eq. (15)

  11. Moiseyev, N.: Non-Hermitian Quantum Mechanics. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  12. Kato, T.: Perturbation theory for linear operators. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  13. Dembowski, C., Gräf, H.-D., Harney, H.L., Heine, A., Heiss, W.D., Rehfeld, H., Richter, A.: Experimental Observation of the Topological Structure of Exceptional Points. Phys. Rev. Lett. 86, 787 (2001)

    Article  ADS  Google Scholar 

  14. Dembowski, C., Dietz, B., Gräf, H.-D., Harney, H. L., Heine, A., Heiss, W.D., Richter, A.: Observation of a Chiral State in a Microwave Cavity. Phys. Rev. Lett. 90, 034101 (2003)

    Article  ADS  Google Scholar 

  15. Dietz, B., Harney, H. L., Kirillov, O.N., Miski-Oglu, M., Richter, A., Schaefer, F.: Exceptional Points in a Microwave Billiard with Time-Reversal Invariance Violation. Phys. Rev. Lett. 106, 150403 (2011)

    Article  ADS  Google Scholar 

  16. Bittner, S., Dietz, B., Harney, H. L., Miski-Oglu, M., Richter, A., Schäfer, F.: Scattering experiments with microwave billiards at an exceptional point under broken time-reversal invariance. Phys. Rev. E 89, 032909 (2014)

    Article  ADS  Google Scholar 

  17. Seyranian, A.P., Kirillov, O.N., Mailybaev, A.A.: Coupling of eigenvalues of complex matrices at diabolic and exceptional points. J. Phys. A 38, 1723 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Heiss, W.D.: Chirality of wave functions for three coalescing levels. J. Phys. A: Math. Theor. 41, 244010 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  19. Heiss, W.D., Müller, M., Rotter, I.: Collectivity, Phase Transitions and Exceptional Points in Open Quantum Systems. Phys. Rev. E 58, 2894 (1998)

    Article  ADS  Google Scholar 

  20. Levai, G., Ruzicka, F., Znojil, M.: Three solvable matrix models of a quantum catastrophe. Int. J. Theor. Phys. 53, 2875 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Heiss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiss, W.D. Green’s Functions at Exceptional Points. Int J Theor Phys 54, 3954–3959 (2015). https://doi.org/10.1007/s10773-014-2428-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2428-7

Keywords

Navigation