Skip to main content
Log in

Entanglement Teleportation via One Two-Qubit Spin Evolution Quantum Channel

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Entanglement teleportation via treating one two-qubit evolution Ising model as the quantum channel with Dzyaloshinskii-Moriya (DM) interaction under inhomogeneous magnetic field is investigated in detail. We mainly concentrate on the effects about the purity (r) of the initial state about the channel system, the DM interaction (D) and the inhomogeneous magnetic field (b) on the entanglement of the output state and the average fidelity. We show that varying the parameters D and b can influence on the frequency of the oscillation to the teleported entanglement and the average fidelity, and the amplitude of the oscillation can be enhanced evidently by changing r or tuning the entanglement of the input state. The teleported entanglement can fall to zero and maintain to be zero for a short period of time before entanglement recovers when we change the three parameters, one interesting point is that the time interval of the teleported entanglement sudden death will be shorter when we choose the higher purity r of the initial channel state. It also shown us that choosing the smaller values of D and b can broaden the length of the average fidelity where the region is superior to 2/3 and raising the purity of initial state of the quantum channel can expand the height of the average fidelity where the region is superior to 2/3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, K.: Rev. Mod. Phys. 81, 866 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Lee, J., Kim, M.S.: Phys. Rev. Lett. 84, 4236 (2000)

    Article  ADS  Google Scholar 

  5. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Phys. Rev. A 89, 033856 (2014)

    Article  ADS  Google Scholar 

  6. Yeo, Y., Chua, W.K.: Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  7. Hutter, A., Wootton, J.R., Loss D.: Phys. Rev. A 89, 022326 (2014)

    Article  ADS  Google Scholar 

  8. Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  9. Xia, Y., Chen, Q.Q., Song, J.: Int. J. Theor. Phys. 51, 3423 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Xia, Y., Song, J., Song, H.S.: J. Opt. Soc. Am. B 28, 2909 (2011)

    Article  ADS  Google Scholar 

  11. Friis, N., Lee, A.R., Truong, K., Sabłn, C., Solano, E., Johansson, G., Fuentes, I.: Phys. Rev. Lett. 110, 113602 (2013)

    Article  ADS  Google Scholar 

  12. Xia, Y., Song, J., Lu, P.M., Song, H.S.: J. Appl. Phys. 109, 103111 (2011)

    Article  ADS  Google Scholar 

  13. Xia, Y., Song, J., Song, H.S.: J. Phys. B: At. Mol. Opt. Phys. 40, 3719 (2007)

    Article  ADS  Google Scholar 

  14. Zhang, F.Y., Liu, B., Chen, Z.H., Wu, S.L., Song, H.S.: Ann. Phys. 346, 103–112 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. Oh, S., Lee, S., Lee, H.W.: Phys. Rev. A 66, 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  16. Mehran, E., Mahdavifar, S., Jafari, R.: Phys. Rev. A 89, 042306 (2014)

    Article  ADS  Google Scholar 

  17. Zhang, F.Y., Chen, Z.H., Li, C., Song, H.S.: Phys. Lett. A 376, 2418 (2012)

    Article  ADS  Google Scholar 

  18. Jung, E., Hwang, M.R., Ju, Y.H., et al.: Phys. Rev. A 78, 012312 (2008)

    Article  ADS  Google Scholar 

  19. Yeo, Y., Kho, Z.W., Wang, L.: EPL 86, 40009 (2009)

    Article  ADS  Google Scholar 

  20. Bhaktavatsala Rao, D.D., Panigrahi, P.K., Mitra, C.: Phys. Rev. A 78, 022336 (2008)

    Article  ADS  Google Scholar 

  21. Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  22. Lee, J., Kim, M.S.: Phys. Rev. Lett. 84, 4236 (2000)

    Article  ADS  Google Scholar 

  23. Santos, L.F.: Phys. Rev. A 67, 062306 (2003)

    Article  ADS  Google Scholar 

  24. Yeo, Y.: Phys. Rev. A 66, 062312 (2002)

    Article  ADS  Google Scholar 

  25. Zhang, G.F.: Phys. Rev. A 75, 034304 (2007)

    Article  ADS  Google Scholar 

  26. Yeo, Y.: Phys. Lett. A 309, 215 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Yeo, Y., Liu, T.Q., Lu, Y.E., Yang, Q.Z.: J. Phys. A 38, 3235 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Dzialoshinskii, I.: J. Phys. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  29. Moriya, T.: Phys. Rev. Lett. 4, 288 (1960)

    Article  ADS  Google Scholar 

  30. Hu, X.D., Das Sarma, S.: Phys. Rev. A 61, 062301 (2000)

    Article  ADS  Google Scholar 

  31. Hu, X.D., Sousa, R., Sarma, S.D.: Phys. Rev. Lett. 86, 918 (2001)

    Article  ADS  Google Scholar 

  32. Bowen, G., Bose, S.: Phys Rev. Lett. 87, 267901 (2001)

    Article  ADS  Google Scholar 

  33. Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Rev. A 60, 1888 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Peres, A.: Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This project was supported by the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2012021003-3)and the Special Funds of the National Natural Science Foundation of China (Grant No. 11247247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Guo-Hui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo-Hui, Y., Le, S. Entanglement Teleportation via One Two-Qubit Spin Evolution Quantum Channel. Int J Theor Phys 54, 1370–1379 (2015). https://doi.org/10.1007/s10773-014-2335-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2335-y

Keywords

Navigation