Skip to main content
Log in

Limitation to Communication of Fermionic System in Accelerated Frame

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this article, we investigate communication between an inertial observer and an accelerated observer, sharing fermionic system, when they use classical and quantum communication using single rail or dual rail encoding. The purpose of this work is to understand the limit to the communication between an inertial observer and an accelerated observer, with single rail or dual rail encoding of fermionic system. We observe that at the infinite acceleration, the coherent information of single(or double) rail quantum channel vanishes, but those of classical ones may have finite values. In addition, we see that even when considering a method beyond the single-mode approximation, for the communication between Alice and Bob, the dual rail entangled state seems to provide better information transfer than the single rail entangled state, when we take a fixed choice of the Unruh mode. Moreover, we find that the single-mode approximation may not be sufficient to analyze communication of fermionic system in an accelerated frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alsing, P.M., Milburn, G.J.: Phys. Rev. Lett. 91, 180404 (2003)

    Article  ADS  Google Scholar 

  2. Ball, J.L., Fuentes-Schuller, I., Schuller, F.P.: Phys. Lett. A 359, 550 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Fuentes-Schullerm, I., Mann, R.B.: Phys. Rev. Lett. 95, 120404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. Pan, Q., Jing, J.: Phys. Rev. D 78, 065015 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. Alsing, P.M., Fuentes, I.: Class. Quan. Grav. 29, 224001 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ramzan, M.: Chin. Phys. Lett. 29, 020302 (2012)

    Article  ADS  Google Scholar 

  7. Adesso, G., et al.: Class. Quantum Grav. 29, 224002 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. Doukas, J., et al.: Phys. Rev. A 87, 012306 (2013)

    Article  ADS  Google Scholar 

  9. Ramzan, M.: Chin. Phys. Lett. 30, 060307 (2013)

    Article  ADS  Google Scholar 

  10. Metwally, N.: JOSA B 30, 233 (2013)

    Article  ADS  Google Scholar 

  11. Sagheer, A., Hamdoun, H.: Quantum Inform. Comput. 14, 0255 (2014)

    MathSciNet  Google Scholar 

  12. Yao, Y., et al.: Phys. Rev. A 89, 042336 (2014)

    Article  ADS  Google Scholar 

  13. Ramzan, M.: Quantum Inf. Proces. 13, 259 (2014)

    Article  MATH  Google Scholar 

  14. Martín-Martínez, E., León, J.: Phys. Rev. A 80, 042318 (2010)

    Article  Google Scholar 

  15. Martín-Martínez, E., León, J.: Phys. Rev. A 81, 032320 (2010)

    Article  ADS  Google Scholar 

  16. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  17. Bruschi, D., Louko, J., Martín-Martínez, E., Dragan, A., Fuentes, I.: Phys. Rev. A 82, 042332 (2010)

    Article  ADS  Google Scholar 

  18. Martín-Martínez, E., Fuentez, I.: Phys. Rev. A 83, 052306 (2011)

    Article  ADS  Google Scholar 

  19. Jochym-O’Connor, T., Bradler, K, Wilde, M.M.: J. Phys. 44, 415306 (2011)

    Google Scholar 

  20. Bradler, K, Jochym-O’Connor, T., Jauregui, R.: J. Phys. 52, 062202 (2011)

    MathSciNet  Google Scholar 

  21. Bradler, K., Hayden, P., Panangaden, P.: Comm. Math. Phys. 312, 361 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Hosler, D., Bruck, C.V., Kok, P.: Phys. Rev. A 85, 042312 (2012)

    Article  ADS  Google Scholar 

  23. Martín-Martínez, E., Hostler, D., Montero, M.: Phys. Rev. A 85, 032302 (2012)

    Article  Google Scholar 

  24. Montero, M., Martín-Martínez, E.: Phys. Rev. A 83, 062323 (2011)

    Article  ADS  Google Scholar 

  25. Chang, J., Kwon, Y.: Phys. Rev. A 85, 032302 (2012)

    Article  ADS  Google Scholar 

  26. Kwon, Y., Chang, J.: Phys. Rev. A 86, 014302 (2012)

    Article  ADS  Google Scholar 

  27. Montero, M., Martín-Martínez, E.: Phys. Rev. A 85, 024301 (2012)

    Article  ADS  Google Scholar 

  28. Ramzan, M.: Physica A 392, 5248 (2013)

    Article  ADS  Google Scholar 

  29. Dupuis, F., Hayden, P., Li, K. IEEE Trans. Inform. 56, 2956 (2010)

    Article  MathSciNet  Google Scholar 

  30. Yard, J., Hayden, P., Devetak, I. IEEE Trans. Inform. 57, 7147 (2011)

    Article  MathSciNet  Google Scholar 

  31. Savov, I., Wilde, M.M. arXiv: 1111.3645

Download references

Acknowledgments

We would like to thank anonymous referee and Dr.Martín-Martínez for valuable comments. This work is supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0025620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younghun Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Kwon, Y. Limitation to Communication of Fermionic System in Accelerated Frame. Int J Theor Phys 54, 996–1008 (2015). https://doi.org/10.1007/s10773-014-2292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2292-5

Keywords

Navigation