Skip to main content
Log in

Power Law and Logarithmic Ricci Dark Energy Models in Hořava-Lifshitz Cosmology

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work, we studied the Power Law and the Logarithmic Entropy Corrected versions of the Ricci Dark Energy (RDE) model in a spatially non-flat universe and in the framework of Hořava-Lifshitz cosmology. For the two cases containing non-interacting and interacting RDE and Dark Matter (DM), we obtained the exact differential equation that determines the evolutionary form of the RDE energy density. Moreover, we obtained the expressions of the deceleration parameter q and, using a parametrization of the equation of state (EoS) parameter ω D given by the relation ω D (z) = ω 0+ω 1 z, we derived the expressions of both ω 0 and ω 1. We interestingly found that the expression of ω 0 is the same for both non-interacting and interacting case. The expression of ω 1 for the interacting case has strong dependence from the interacting parameter b 2. The parameters derived in this work are done in small redshift approximation and for low redshift expansion of the EoS parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Perlmutter, S., et al.: Measurements of Λ and Ω from 42 High-Redshift Supernovae. Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  2. Planck Collaboration, Ade, P.A.R., Aghanim, N., et al. arXiv:1303.5076 (2013)

  3. Tegmark, M., et al.: Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004)

    ADS  Google Scholar 

  4. Allen, S.W., Schmidt, R.W., Ebeling, H., Fabian, A.C., van Speybroeck, L.: Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters. Mon. Not. R. Astron. Soc. 353, 457 (2004)

    ADS  Google Scholar 

  5. Copeland, E.J., Sami, M., Tsujikawa, S.: International Journal of Modern Physics D, Dynamics of Dark Energy 15, 1753 (2006)

    ADS  MATH  MathSciNet  Google Scholar 

  6. del Campo, S., Herrera, R., Pavon, D.: Interacting models may be key to solve the cosmic coincidence problem. J. Cosmol. Astropart. Phys. 0901, 020 (2009)

    ADS  Google Scholar 

  7. Leon, G., Saridakis, E.N.: Phantom dark energy with varying-mass dark matter particles: Acceleration and cosmic coincidence problem. Phys. Lett. B 693, 1 (2010)

    ADS  Google Scholar 

  8. Jamil, M., Rahaman, F.: On the resolution of cosmic coincidence problem and phantom crossing with triple interacting fluids. Eur. Phys. J. C 64, 97 (2009)

    ADS  Google Scholar 

  9. Peiris, H.V., et al.: First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications For Inflation. Astrophys. J. Suppl. Ser 148, 213 (2003)

    ADS  Google Scholar 

  10. Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342, 155 (2012)

    ADS  Google Scholar 

  11. Padmanabhan, T.: Cosmological constant-the weight of the vacuum. Phys. Rep. 380, 235 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  12. Bertolami, O.: Time-dependence cosmological term. Nuovo Cimento B Serie 93, 36 (1986)

    ADS  Google Scholar 

  13. Cai, Y.-F., Saridakis, E.N., Setare, M.R., Xia, J.-Q.: Quintom cosmology: Theoretical implications and observations. Phys. Rep. 493, 1 (2010)

    ADS  MathSciNet  Google Scholar 

  14. Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom Energy: Dark Energy with w¡-1 Causes a Cosmic Doomsda. Phys. Rev. Lett. 91, 071301 (2003)

    ADS  Google Scholar 

  15. Chakraborty, S., Debnath, U.: The Role of a Chameleon Field in AN Anisotropic Universe with Logamediate and Intermediate Scenarios. Int. J. Mod. Phys. A 25, 4691 (2010)

    ADS  MATH  Google Scholar 

  16. Chen, X., Huang, M.X., Kachru, S., Shiu, G.: Observational signatures and non-Gaussianities of general single-field inflation. J. Cosmol. Astropart. Phys. 1, 2 (2007)

    ADS  Google Scholar 

  17. Davis, A.-C., Schelpe, C.A.O., Shaw, D.J.: Effect of a chameleon scalar field on the cosmic microwave background. Phys. Rev. D 80, 064016 (2009)

    ADS  Google Scholar 

  18. Dutta, S., Saridakis, E.N., Scherrer, R.J.: Dark energy from a quintessence (phantom) field rolling near a potential minimum (maximum). Phys. Rev. D 79, 103005 (2009)

    ADS  Google Scholar 

  19. Feng, B., Wang, X.: & Zhang, X.: Dark energy constraints from the cosmic age and supernova. Phys. Lett. B 607, 35 (2005)

    ADS  Google Scholar 

  20. Guo, Z.-K., Piao, Y.-S., Zhang, X., Zhang, Y.-Z.: Cosmological evolution of a quintom model of dark energy. Phys. Lett. B 608, 177 (2005)

    ADS  Google Scholar 

  21. Huang, M.-X., Shiu, G., Underwood, B.: Multifield Dirac-Born-Infeld inflation and non-Gaussianities. Phys. Rev. D 77, 023511 (2008)

    ADS  Google Scholar 

  22. Nojiri, S., Odintsov, S.D.: Quantum de Sitter cosmology and phantom matter. Phys. Lett. B 562, 147 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  23. Onemli, V.K., Woodard, R.P.: Quantum effects can render w¡-1 on cosmological scales. Phys. Rev. D 70, 107301 (2004)

    ADS  Google Scholar 

  24. Ratra, B., Peebles, P.J.E.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406 (1988)

    ADS  Google Scholar 

  25. Setare, M.R., Saridakis, E.N.: Coupled oscillators as models of quintom dark energy. Phys. Lett. B 668, 177 (2008)

    ADS  Google Scholar 

  26. Setare, M.R., Saridakis, E.N.: The quintom model with O(N) symmetry. J. Cosmol. Astropart. Phys. 9, 26 (2008)

    ADS  Google Scholar 

  27. Wei, H., Zhang, S.N.: Dynamics of quintom and hessence energies in loop quantum cosmology. Phys. Rev. D 76, 063005 (2007)

    ADS  Google Scholar 

  28. Wetterich, C.: Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 302, 668 (1988)

    ADS  Google Scholar 

  29. Xia, T.Y., Zhang, Y.: 2-loop quantum Yang Mills condensate as dark energy. Phys. Lett. B 656, 19 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  30. Zlatev, I., Wang, L., Steinhardt, P.J.: Quintessence, Cosmic Coincidence, and the Cosmological Constant. Phys. Rev. Lett. 82, 896 (1999)

    ADS  Google Scholar 

  31. Zhao, W., Zhang, Y.: Quintom models with an equation of state crossing -1. Phys. Rev. D 73, 123509 (2006)

    ADS  Google Scholar 

  32. Zhang, Y., Xia, T.Y., Zhao, W.: Yang Mills condensate dark energy coupled with matter and radiation. Classical and Quantum Gravity 24, 3309 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  33. Fischler, W., Susskind, L.: Holography and Cosmology. arXiv:hep-th/9806039 (1998)

  34. Li, M.: A model of holographic dark energy. Phys. Lett. B 603, 1 (2004)

    ADS  Google Scholar 

  35. Myung, Y.S., Seo, M.G.: Origin of holographic dark energy models. Phys. Lett. B 671, 435 (2009)

    ADS  Google Scholar 

  36. Huang, Q.G., Li, M.: The holographic dark energy in a non-flat universe. J. Cosmol. Astropart. Phys. 8, 13 (2004)

    ADS  Google Scholar 

  37. ’t Hooft, G.: The Black Hole Horizon as a Dynamical System. Int. J. Mod. Phys. D 15, 1587 (2006)

    ADS  MATH  MathSciNet  Google Scholar 

  38. Cohen, A.G., Kaplan, D.B., Nelson, A.E.: Effective Field Theory, Black Holes, and the Cosmological Constant. Phys. Rev. Lett. 82, 4971 (1999)

    ADS  MATH  MathSciNet  Google Scholar 

  39. Guberina, B., Horvat, R., Nikolic, H.: Non-saturated holographic dark energy. J. Cosmol. Astropart. Phys. 1, 12 (2007)

    ADS  Google Scholar 

  40. Bekenstein, J.D.: Black Holes and Entropy. Phys. Rev. D 7, 2333 (1973)

    ADS  MathSciNet  Google Scholar 

  41. Hawking, S.W.: Black holes and thermodynamics. Phys. Rev. D 13, 191 (1976)

    ADS  MathSciNet  Google Scholar 

  42. Chen, B., Pi, S., Tang, J.-Z.: Scale invariant power spectrum in Horava-Lifshitz cosmology without matter. J. Cosmol. Astropart. Phys. 8, 7 (2009)

    ADS  Google Scholar 

  43. Jamil, M., Saridakis, E.N., Setare, M.R.: Holographic dark energy with varying gravitational constant. Phys. Lett. B 679, 172 (2009)

    ADS  Google Scholar 

  44. Jamil, M., Farooq, M.U.: Interacting Holographic Viscous Dark Energy Model. Int. J. Theor. Phys. 49, 42 (2010)

    MATH  MathSciNet  Google Scholar 

  45. Jamil, M., Sheykhi, A.: Interacting Entropy-Corrected Agegraphic-Tachyon Dark Energy. Int. J. Theor. Phys. 50, 625 (2011)

    MATH  MathSciNet  Google Scholar 

  46. Karami, K., Jamil, M., Roos, M., Ghaffari, S., Abdolmaleki, A.: Entropy-corrected new agegraphic dark energy in Horava-Lifshitz cosmology. Astrophys. Space Sci. 340, 175 (2012)

    ADS  MATH  Google Scholar 

  47. Sheykhi, A.: Thermodynamics of interacting holographic dark energy with the apparent horizon as an IR cutoff. Classical and Quantum Gravity 27, 025007 (2010)

    ADS  MathSciNet  Google Scholar 

  48. Wang, B., Lin, C.Y., Abdalla, E.: Constraints on the interacting holographic dark energy model. Phys. Lett. B 637, 357 (2006)

    ADS  Google Scholar 

  49. Chattopadhyay, S., Debnath, U.: Holographic dark energy scenario and variable modified Chaplygin gas. Astrophys. Space Sci. 319, 183 (2009)

    ADS  Google Scholar 

  50. Karami, K., Fehri, J.: New holographic scalar field models of dark energy in non-flat universe. Phys. Lett. B 684, 61 (2010)

    ADS  Google Scholar 

  51. Karami, K., Khaledian, M. S., Jamil, M.: Reconstructing interacting entropy-corrected holographic scalar field models of dark energy in the non-flat universe. Phys. Scr. 83, 025901 (2011)

    ADS  Google Scholar 

  52. Wang, B., Zang, J., Lin, C.Y., Abdalla, E., Micheletti, S.: Interacting dark energy and dark matter: Observational constraints from cosmological parameters. Nucl. Phys. B 778, 69 (2007)

    ADS  Google Scholar 

  53. Lu, J., Saridakis, E.N., Setare, M.R., Xu, L.: Observational constraints on holographic dark energy with varying gravitational constant. J. Cosmol. Astropart. Phys. 3, 31 (2010)

    ADS  Google Scholar 

  54. Zhang, X.: Heal the world: Avoiding the cosmic doomsday in the holographic dark energy model. Phys. Lett. B 683, 81 (2010)

    ADS  Google Scholar 

  55. Nojiri, S., Odintsov, S.D.: Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 505, 59 (2011)

    ADS  MathSciNet  Google Scholar 

  56. Nojiri, S., Odintsov, S.D.: Introduction to Modified Gravity and Gravitational Alternative for Dark Energy. Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007)

    MATH  MathSciNet  Google Scholar 

  57. Huang, Q.-G., Gong, Y.: Supernova constraints on a holographic dark energy model. J. Cosmol. Astropart. Phys. 8, 6 (2004)

    ADS  Google Scholar 

  58. Chang, Z., Wu, F.-Q., Zhang, X.: Constraints on holographic dark energy from X-ray gas mass fraction of galaxy clusters. Phys. Lett. B 633, 14 (2006)

    ADS  Google Scholar 

  59. Huang, Q.-G., Li, M.: Anthropic principle favours the holographic dark energy. J. Cosmol. Astropart. Phys. 3, 1 (2005)

    ADS  Google Scholar 

  60. Saridakis, E.N.: Restoring holographic dark energy in brane cosmology. Phys. Lett. B 660, 138 (2008)

    ADS  MathSciNet  Google Scholar 

  61. Setare, M.R., Saridakis, E.N.: Correspondence between holographic and Gauss Bonnet dark energy models. Phys. Lett. B 670, 1 (2008)

    ADS  Google Scholar 

  62. Nojiri, S., Odintsov, S.D.: Modified Gauss Bonnet theory as gravitational alternative for dark energy. Phys. Lett. B 631, 1 (2005)

    ADS  MATH  MathSciNet  Google Scholar 

  63. Feng, C.J., Zhang, X.: Holographic Ricci dark energy in Randall-Sundrum braneworld: Avoidance of big rip and steady state future. Phys. Lett. B 680, 399 (2009)

    ADS  Google Scholar 

  64. Wei, H.: Modified holographic dark energy. Nucl. Phys. B 819, 210 (2009)

    ADS  MATH  Google Scholar 

  65. Bisabr, Y.: Holographic dark energy model and scalar-tensor theories. Gen. Relativ. Gravit. 41, 305 (2009)

    ADS  MATH  MathSciNet  Google Scholar 

  66. Nozari, K., Rashidi, N.: A Braneworld Dark Energy Model with Induced Gravity and the Gauss-Bonnet Effect. Int. J. Theor. Phys. 48, 2800 (2009)

    MATH  MathSciNet  Google Scholar 

  67. Karami, K., Khaledian, M.S.: Reconstructing f(R) modified gravity from ordinary and entropy-corrected versions of the holographic and new agegraphic dark energy models. Journal of High Energy Physics 3, 86 (2011)

    ADS  Google Scholar 

  68. Setare, M.R., Jamil, M.: Holographic dark energy in Brans-Dicke cosmology with chameleon scalar field. Phys. Lett. B 690, 1 (2010)

    ADS  Google Scholar 

  69. Deffayet, C., Dvali, G., Gabadadze, G.: Accelerated universe from gravity leaking to extra dimensions. Phys. Rev. D 65, 044023 (2002)

    ADS  MathSciNet  Google Scholar 

  70. Ovalle, J., Linares, F., Pasqua, A., Sotomayor, A.: The role of exterior Weyl fluids on compact stellar structures in Randall-Sundrum gravity. Classical and Quantum Gravity 30, 175019 (2013)

    ADS  MathSciNet  Google Scholar 

  71. Pasqua, A., Chattopadhyay, S.: A study on the modified holographic Ricci dark energy in logarithmic f(T) gravity. Can. J. Phys. 91, 351 (2013)

    ADS  Google Scholar 

  72. Chattopadhyay, S., Pasqua, A.: Reconstruction of f(T) gravity from the Holographic Dark Energy. Astrophys. Space Sci. 344, 269 (2013)

    ADS  Google Scholar 

  73. Ghosh, R., Pasqua, A., Chattopadhyay, S.: Generalized second law of thermodynamics in the emergent universe for some viable models of f(T) gravity. European Physical Journal Plus 128, 12 (2013)

    ADS  Google Scholar 

  74. Li, B., Sotiriou, T.P., Barrow, J. D.: Large-scale structure in f(T) gravity. Phys. Rev. D 83, 104017 (2011)

    ADS  Google Scholar 

  75. Karami, K., Abdolmaleki, A.: Generalized second law of thermodynamics in f(T) gravity. J. Cosmol. Astropart. Phys. 1204, 007 (2012)

    ADS  Google Scholar 

  76. Capozziello, S.: Curvature Quintessence. Int. J. Mod. Phys. D 11, 483 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  77. Jawad, A., Chattopadhyay, S., Pasqua, A.: A holographic reconstruction of the modified f(R) Horava-Lifshitz gravity with scale factor in power-law form. Astrophys. Space Sci. 346, 273 (2013)

    ADS  Google Scholar 

  78. Capozziello, S., Nojiri, S., Odintsov, S.D., Troisi, A.: Cosmological viability of -gravity as an ideal fluid and its compatibility with a matter dominated phase. Phys. Lett. B 639, 135 (2006)

    ADS  Google Scholar 

  79. Jawad, A., Chattopadhyay, S., Pasqua, A.: Reconstruction of f(G) gravity with the new agegraphic dark-energy model. European Physical Journal Plus 128, 88 (2013)

    ADS  Google Scholar 

  80. Jawad, A., Pasqua, A., Chattopadhyay, S.: Correspondence between f(G) gravity and holographic dark energy via power-law solution. Astrophys. Space Sci. 344, 489 (2013)

    ADS  Google Scholar 

  81. Myrzakulov, R.: FRW cosmology in F(R,T) gravity. Eur. Phys. J. C 72, 2203 (2012)

    ADS  Google Scholar 

  82. Pasqua, A., Chattopadhyay, S., Khomenko, I.: A reconstruction of modified holographic Ricci dark energy in F(R, T) gravity, Canad. J. Phys., Online first

  83. Dvali, G., Gabadadze, G., Porrati, M.: 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B 485, 208 (2000)

    ADS  MATH  MathSciNet  Google Scholar 

  84. Chattopadhyay, S., Pasqua, A.: Holographic DBI-Essence Dark Energy via Power-Law Solution of the Scale Factor. Int. J. Theor. Phys., 332 (2013)

  85. Pasqua, A., Khomenko, I.: Interacting Ricci Logarithmic Entropy-Corrected Holographic Dark Energy in Brans-Dicke Cosmology. Int. J. Theor. Phys. 32, 3981 (2013)

    MathSciNet  Google Scholar 

  86. Pasqua, A., Chattopadhyay, S.: New Agegraphic Dark Energy model in chameleon Brans-Dicke cosmology for different forms of the scale factor. Astrophys. Space Sci. 384, 283 (2013)

    ADS  Google Scholar 

  87. Pasqua, A., Assaf, K., Aly, A. A.: Power Law and Logarithmic Entropy Corrected Ricci Dark Energy Models in Brans-Dicke Chameleon Cosmology (2013)

  88. Hořava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009)

    ADS  MathSciNet  Google Scholar 

  89. Hořava, P.: Quantum criticality and Yang-Mills gauge theory. Phys. Lett. B 694, 172 (2010)

    ADS  MathSciNet  Google Scholar 

  90. Hořava, P.: Spectral Dimension of the Universe in Quantum Gravity at a Lifshitz Point. Phys. Rev. Lett. 102, 161301 (2009)

    ADS  MathSciNet  Google Scholar 

  91. Lifshitz, E. M.: Zh. Eksp. Teor. Fiz. 11, 255 (1949)

    Google Scholar 

  92. Cai, R.-G., Cao, L.-M., Ohta, N.: Topological black holes in Horava-Lifshitz gravity. Phys. Rev. D 80, 024003 (2009)

    ADS  MathSciNet  Google Scholar 

  93. Klusoň, J.: Horava-Lifshitz f(R) gravity. Journal of High Energy Physics 11, 78 (2009)

    ADS  Google Scholar 

  94. Myung, Y.S.: Generalized uncertainty principle and Horava-Lifshitz gravity. Phys. Lett. B 679, 491 (2009)

    ADS  MathSciNet  Google Scholar 

  95. Li, M., Pang, Y.: A trouble with Horava-Lifshitz gravity. Journal of High Energy Physics 8, 15 (2009)

    ADS  MathSciNet  Google Scholar 

  96. Kiritsis, E., Kofinas, G.: Horava-Lifshitz cosmology. Nucl. Phys. B 821, 467 (2009)

    ADS  MATH  MathSciNet  Google Scholar 

  97. Sotiriou, T.P., Visser, M., Weinfurtner, S.: Quantum gravity without Lorentz invariance. Journal of High Energy Physics 10, 33 (2009)

    ADS  MathSciNet  Google Scholar 

  98. Cai, Y.-F., Zhang, X.: Primordial perturbations with a modified dispersion relation. Phys. Rev. D 80, 043520 (2009)

    ADS  MathSciNet  Google Scholar 

  99. Gao, X., Wang, Y., Xue, W., Brandenberger, R.: Fluctuations in a Horava-Lifshitz bouncing cosmology. J. Cosmol. Astropart. Phys. 2, 20 (2010)

    ADS  Google Scholar 

  100. Iorio, L., Ruggiero, M. L.: Constraining the Kehagias-Sfetsos solution in the Horava-Lifshitz gravity with extrasolar planets. arXiv: http://arxiv.org/abs/0909.5355

  101. Dutta, S., Saridakis, E.N.: Observational constraints on Horava-Lifshitz cosmology. J. Cosmol. Astropart. Phys. 1, 13 (2010)

    ADS  Google Scholar 

  102. Greenwald, J., Papazoglou, A., Wang, A.: Black holes and stars in Horava-Lifshitz theory with projectability condition. Phys. Rev. D 81, 084046 (2010)

    ADS  Google Scholar 

  103. Myung, Y.S.: Thermodynamics of black holes in the deformed HoravaLifshitz gravity. Physics Letters B 678, 127 (2009)

    ADS  MathSciNet  Google Scholar 

  104. Greenwald, J., Lenells, J., Lu, J. X., Satheeshkumar, V. H., Wang, A.: Black holes and global structures of spherical spacetimes in Horava-Lifshitz theory. Phys. Rev. D 84, 084040 (2011)

    ADS  Google Scholar 

  105. Mukohyama, S.: Horava-Lifshitz Cosmology: A Review. Classical and Quantum Gravity 27, 223101 (2010)

    ADS  MathSciNet  Google Scholar 

  106. Mukohyama, S.: Dark matter as integration constant in Horava-Lifshitz gravity. Phys. Rev. D 80, 064005 (2009)

    ADS  Google Scholar 

  107. Saridakis, E.N.: Horava-Lifshitz dark energy. Eur. Phys. J. C 67, 229 (2010)

    ADS  Google Scholar 

  108. Majhi, B. R., Samanta, S.: Hawking radiation due to photon and gravitino tunneling. Ann. Phys. 325, 2410 (2010)

    ADS  MATH  MathSciNet  Google Scholar 

  109. Wang, A.: F(R) term and geometric origin of the dark sector in HoravaLifshitz gravity. Modern Physics Letters A 26, 387 (2011)

    ADS  MATH  Google Scholar 

  110. Volovik, G.E.: Z = 3 Lifshitz-Horava model and fermi-point scenario of emergent gravity. Soviet Journal of Experimental and Theoretical Physics Letters 89, 525 (2009)

    ADS  Google Scholar 

  111. Visser, M.: Lorentz symmetry breaking as a quantum field theory regulator. Phys. Rev. D 80, 025011 (2009)

    ADS  MathSciNet  Google Scholar 

  112. Minamitsuji, M.: Classification of cosmology with arbitrary matter in the Horava-Lifshitz model. Phys. Lett. B 684, 194 (2010)

    ADS  MathSciNet  Google Scholar 

  113. Takahashi, T., Soda, J.: Chiral Primordial Gravitational Waves from a Lifshitz Point. Phys. Rev. Lett. 102, 231301 (2009)

    ADS  Google Scholar 

  114. Wang, A., Maartens, R.: Cosmological perturbations in Horava-Lifshitz theory without detailed balance. Phys. Rev. D 81, 024009 (2010)

    ADS  Google Scholar 

  115. Danielsson, U. H., Thorlacius, L.: Black holes in asymptotically Lifshitz spacetime. Journal of High Energy Physics 3, 70 (2009)

    ADS  MathSciNet  Google Scholar 

  116. Bertoldi, G., Burrington, B. A., Peet, A.: Black holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent. Phys. Rev. D 80, 126003 (2009)

    ADS  MathSciNet  Google Scholar 

  117. Brandenberger, R.: Processing of cosmological perturbations in a cyclic cosmology. Phys. Rev. D 80, 023535 (2009)

    ADS  MathSciNet  Google Scholar 

  118. Lin, K., Mukohyama, S., Wang, A.: Solar system tests and interpretation of gauge field and Newtonian prepotential in general covariant Horava-Lifshitz gravity. Phys. Rev. D 86, 104024 (2012)

    ADS  Google Scholar 

  119. Appignani, C., Casadio, R., Shankaranarayanan, S.: The cosmological constant and Horava-Lifshitz gravity. J. Cosmol. Astropart. Phys. 4, 6 (2010)

    ADS  Google Scholar 

  120. Karami, K., Jamil, M., Roos, M., Ghaffari, S., Abdolmaleki, A.: Entropy-corrected new agegraphic dark energy in Horava-Lifshitz cosmology. Astrophys. Space Sci. 340, 175 (2012)

    ADS  MATH  Google Scholar 

  121. Jamil, M., Saridakis, E.N., Setare, M. R.: The generalized second law of thermodynamics in Horava-Lifshitz cosmology. J. Cosmol. Astropart. Phys. 11, 32 (2010)

    ADS  MathSciNet  Google Scholar 

  122. Karami, K., Sheykhi, A., Jamil, M., et al.: Power-law entropy-corrected new agegraphic dark energy in Horava-Lifshitz cosmology. Can. J. Phys. 90, 473 (2012)

    ADS  Google Scholar 

  123. Jamil, M., Saridakis, E.N.: New agegraphic dark energy in Horava-Lifshitz cosmology. J. Cosmol. Astropart. Phys. 7, 28 (2010)

    ADS  MathSciNet  Google Scholar 

  124. Setare, M. R., Jamil, M.: Holographic dark energy with varying gravitational constant in Horava-Lifshitz cosmology. J. Cosmol. Astropart. Phys. 2, 10 (2010)

    ADS  MathSciNet  Google Scholar 

  125. Pasqua, A., Chattopadhyay, S.: Logarithmic Entropy-Corrected Holographic Dark Energy in Horava-Lifshitz cosmology with Granda-Oliveros cut-off (2013)

  126. Elizalde, E., Nojiri, S., Odintsov, S.D., Sáez-Gómez, D.: Unifying inflation with dark energy in modified F(R) Horava-Lifshitz gravity. Eur. Phys. J. C 70, 351 (2010)

    ADS  Google Scholar 

  127. López-Revelles, A., Myrzakulov, R., Sáez-Gómez, D.: Ekpyrotic universes in F(R) Horava-Lifshitz gravity. Phys. Rev. D 85, 103521 (2012)

    ADS  Google Scholar 

  128. Das, S., Shankaranarayanan, S., Sur, S.: Power-law corrections to entanglement entropy of horizons. Phys. Rev. D 77, 064013 (2008)

    ADS  Google Scholar 

  129. Radicella, N., Pavon, D.: The generalized second law in universes with quantum corrected entropy relations. Phys. Lett. B 691, 121 (2010)

    ADS  Google Scholar 

  130. Das, S., Shankaranarayanan, S., Sur, S.: Entanglement and corrections to Bekenstein-Hawking entropy. arXiv: http://arxiv.org/abs/1002.1129

  131. Das, S., Shankaranarayanan, S., Sur, S.: Black hole entropy from entanglement: A review. arXiv: http://arxiv.org/abs/0806.0402

  132. Sheykhi, A., Jamil, M.: Power-Law Entropy Corrected Holographic Dark Energy Model. Gen. Relativ. Gravit. 43, 2661 (2011)

    ADS  MATH  MathSciNet  Google Scholar 

  133. Wei, H.: Entropy-Corrected Holographic Dark Energy. Commun. Theor. Phys. 52, 743 (2009)

    ADS  MATH  Google Scholar 

  134. Gao, C., Wu, F.Q., Chen, X., Shen, Y. G.: Holographic dark energy model from Ricci scalar curvature. Phys. Rev. D 79, 043511 (2009)

    ADS  Google Scholar 

  135. Nojiri, S., Odintsov, S.D.: Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy. Gen. Relativ. Gravit. 38, 1285 (2006)

    ADS  MATH  MathSciNet  Google Scholar 

  136. Cai, R.G., Hu, B., Zhang, Y.: Holography, UV/IR Relation, Causal Entropy Bound and Dark Energy. Commun. Theor. Phys. 51, 954 (2009)

    ADS  MATH  Google Scholar 

  137. Duran, I., Pavon, D.: Model of interacting holographic dark energy at the Ricci scale. Phys. Rev. D 83, 023504 (2011)

    ADS  Google Scholar 

  138. Pasqua, A., Khodam-Mohammadi, A., Jamil, M., Myrzakulov, R.: Interacting Ricci Dark Energy with Logarithmic Correction. Astrophys. Space Sci. 340, 199 (2012)

    ADS  MATH  Google Scholar 

  139. Pasqua, A., Jamil, M., Myrzakulov, R., Majeed, B.: Power-Law Entropy Corrected Ricci Dark Energy and Dynamics of Scalar Fields. Phys. Scr. 86, 045004 (2012)

    ADS  Google Scholar 

  140. Feng, C.J.: Statefinder diagnosis for Ricci dark energy. Phys. Lett. B 670, 231 (2008)

    ADS  Google Scholar 

  141. Feng, C.J.: Reconstructing theory from Ricci dark energy. Phys. Lett. B 676, 168 (2009)

    ADS  Google Scholar 

  142. Feng, C.J.: Reconstructing quintom from Ricci dark energy. Phys. Lett. B 672, 94 (2009)

    ADS  Google Scholar 

  143. Feng, C.J., Li, X.-Z.: Viscous Ricci dark energy. Phys. Lett. B 680, 355 (2009)

    ADS  Google Scholar 

  144. Xu, L., Wang, Y.: Observational constraints to Ricci dark energy model by using: SN, BAO, OHD, fgas data sets. J. Cosmol. Astropart. Phys. 6, 2 (2010)

    ADS  Google Scholar 

  145. Kim, K.Y., Lee, H.W., Myung, Y.S.: On the Ricci dark energy model. Gen. Rel. Grav. 43, 1095 (2011)

    ADS  MATH  MathSciNet  Google Scholar 

  146. Arnowitt, R.L., Deser, S., Misner, C.W.: Gravitation: an introduction to current research. In L. Witten (ed.) chapter 7, pp. 227265. Wiley 1962 (2004)

  147. Hořava, P.: Membranes at quantum criticality. Journal of High Energy Physics 3, 20 (2009)

    ADS  Google Scholar 

  148. Calcagni, G.: Cosmology of the Lifshitz universe. Journal of High Energy Physics 9, 112 (2009)

    ADS  MathSciNet  Google Scholar 

  149. Chaichian, M., Nojiri, S., Odintsov, S.D., Oksanen, M., Tureanu, A.: Modified F(R) Horava-Lifshitz gravity: a way to accelerating FRW cosmology. Classical and Quantum Gravity 27, 185021 (2010)

    ADS  MathSciNet  Google Scholar 

  150. Wang, A., Wu, Q.: Stability of spin-0 graviton and strong coupling in Horava-Lifshitz theory of gravity. Phys. Rev. D 83, 044025 (2011)

    ADS  Google Scholar 

  151. Izumi, K., Mukohyama, S.: Nonlinear superhorizon perturbations in Hoava-Lifshitz gravity. Phys. Rev. D 84, 064025 (2011)

    ADS  Google Scholar 

  152. Hořava, P., Melby-Thompson, C.M.: General covariance in quantum gravity at a Lifshitz point. Phys. Rev. D 82, 064027 (2010)

    ADS  Google Scholar 

  153. da Silva, A.M.: An alternative approach for general covariant HoravaLifshitz gravity and matter coupling. Classical and Quantum Gravity 28, 055011 (2011)

    ADS  MathSciNet  Google Scholar 

  154. Klusoň, J., Nojiri, S., Odintsov, S.D., Sáez-Gómez, D.: U(1) Invariant F(R) HoravaLifshitz gravity. Eur. Phys. J. C 71, 1690 (2011)

    ADS  Google Scholar 

  155. Zhu, T., Wu, Q., Wang, A., Shu, F.-W.: U(1) symmetry and elimination of spin-0 gravitons in Horava-Lifshitz gravity without the projectability condition. Phys. Rev. D 84, 101502 (2011)

    ADS  Google Scholar 

  156. Huterer, D., Turner, M. S.: Prospects for probing the dark energy via supernova distance measurements. Phys. Rev. D 60, 081301 (1999)

    ADS  Google Scholar 

  157. Weller, J., Albrecht, A.: Opportunities for Future Supernova Studies of Cosmic Acceleration. Phys. Rev. Lett. 86, 1939 (2001)

    ADS  Google Scholar 

  158. Perivolaropoulos, L.: Crossing the phantom divide barrier with scalar tensor theories. J. Cosmol. Astropart. Phys. 10, 1 (2005)

    ADS  Google Scholar 

  159. Amendola, L., Tocchini-Valentini, D.: Baryon bias and structure formation in an accelerating universe. Phys. Rev. D 66, 043528 (2002)

    ADS  Google Scholar 

  160. Setare, M. R., Jamil, M.: Holographic dark energy in BransDicke cosmology with chameleon scalar field. Phys. Lett. B 690, 1 (2010)

    ADS  Google Scholar 

  161. Zimdahl, W., Pavon, D.: Scaling Cosmology. Gen. Rel. Grav. 35, 413 (2003)

    ADS  MATH  Google Scholar 

  162. Feng, C., et. al.: Observational constraints on the dark energy and dark matter mutual coupling. Phys. Lett. B 665, 111 (2008)

    ADS  Google Scholar 

  163. He, J.-H., Wang, B., Zhang, P.: Imprint of the interaction between dark sectors in large scale cosmic microwave background anisotropies. Phys. Rev. D 80, 063530 (2009)

    ADS  Google Scholar 

  164. Jamil, M., Rashid, M. A.: Constraining the coupling constant between dark energy and dark matter. Eur. Phys. J. C 60, 141 (2009)

    ADS  Google Scholar 

  165. Jamil, M., Rashid, M. A.: Interacting dark energy with inhomogeneous equation of state. Astrophys. J. 56, 429 (2008)

    MATH  Google Scholar 

  166. Abdalla, E., Abramo, L. R., Sodré, L., Wang, B.: Signature of the interaction between dark energy and dark matter in galaxy clusters. Phys. Lett. B 673, 107 (2009)

    ADS  Google Scholar 

  167. Bertolami, O., Gil Pedro, F., Le Delliou, M.: Dark energydark matter interaction and putative violation of the equivalence principle from the Abell cluster A586. Phys. Lett. B 654, 165 (2007)

    ADS  Google Scholar 

  168. Da̧browski, M. P.: Statefinders, higher-order energy conditions, and sudden future singularities. Phys. Lett. B 625, 184 (2005)

    ADS  MathSciNet  Google Scholar 

  169. Alam, U., Sahni, V., Deep Saini, T., Starobinsky, A. A.: Exploring the Expanding Universe and Dark Energy using the Statefinder Diagnostic. Mon. Not. R. Astron. Soc. 344, 1057 (2003)

    ADS  Google Scholar 

  170. Dutta, S., Saridakis, E.N.: Overall observational constraints on the running parameter λ 0 of Horava-Lifshitz gravity. J. Cosmol. Astropart. Phys. 5, 13 (2010)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Pasqua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasqua, A., Chattopadhyay, S., Khurshudyan, M. et al. Power Law and Logarithmic Ricci Dark Energy Models in Hořava-Lifshitz Cosmology. Int J Theor Phys 54, 972–995 (2015). https://doi.org/10.1007/s10773-014-2291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2291-6

Keywords

Navigation