Skip to main content
Log in

Quantum Bianchi Type IX Cosmology in K-Essence Theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We use one of the simplest forms of the K-essence theory and apply it to the anisotropic Bianchi type IX cosmological model, with a barotropic perfect fluid modeling the usual matter content. We show that the most important contribution of the scalar field occurs during a stiff matter phase. Also, we present a canonical quantization procedure of the theory which can be simplified by reinterpreting the scalar field as an exotic part of the total matter content. The solutions to the Wheeler-DeWitt equation were found using the Bohmian formulation Bohm (Phys. Rev. 85(2):166, 1952) of quantum mechanics, employing the amplitude-real-phase approach Moncrief and Ryan (Phys. Rev. D 44:2375, 1991), where the ansatz for the wave function is of the form Ψ( μ)=χ(ϕ)W( μ)\(e^{- S(\ell ^{\mu })},\), where S is the superpotential function, which plays an important role in solving the Hamilton-Jacobi equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohm, D: Phys. Rev. 85(2), 166 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  2. Moncrief, V., Ryan, M.P.: Phys. Rev. D 44, 2375 (1991)

    Article  MathSciNet  Google Scholar 

  3. Armendariz-Picon, C., Mukhanov, V., Steinbardt, P.J.: Phys. Lett. 85, 4438 (2000)

    Article  Google Scholar 

  4. Armendariz-Picon, C., Mukhanov, V., Steinbardt, P.J.: Phys. Rev. D 63, 103510 (2001)

    Article  Google Scholar 

  5. Bose, N., Majumdar, A.S.: Phys. Rev. D 79, 103517 (2009). A K-essence model of inflation, dark matter and dark energy. arXiv:0812.4131

    Article  Google Scholar 

  6. De-Santiago, J., Cervantes-Cota, J. L.: Phys. Rev. D 83, 063502 (2011)

    Article  Google Scholar 

  7. Saez, D., Ballester, V.J.: Phys. Lett. A 113, 467 (1986)

    Article  Google Scholar 

  8. de Putter, R., Linder, E. V.: Astropart. Phys. 28, 263 (2007). Kinetic K-essence and quintessence. arXiv:0705.0400

    Article  Google Scholar 

  9. Chiba, T., Dutta, S., Scherrer, R.J.: Phys. Rev. D 80, 043517 (2009). Slow-roll K-essence. arXiv:0906.0628

    Article  Google Scholar 

  10. Arroja, F., Sasaki, M.: Phys. Rev. D 81, 107301 (2010). A note on the equivalence of a barotropic perfect fluid with a K-essence scalar field. arXiv:10021376

    Article  Google Scholar 

  11. García, L.A., Tejeiro, J.M., Castañeda, L.: K-essence scalar field as dynamical dark energy. arXiv:1210.5259

  12. Bilic, N., Tupper, G., Viollier, R.: Phys. Lett. B 535, 17 (2002)

    Article  MATH  Google Scholar 

  13. Bento, M., Bertolami, O., Sen, A.: Phys. Rev. D 66, 043507 (2002). Dynamics of dark energy. arXiv:hep-th.0603057

    Article  Google Scholar 

  14. Armendariz-Picon, C., Damour, T., Mukhanov, V.: Phys. Lett. B 458, 209 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Garriga, J., Mukhanov, V.: Phys. Lett. B 458, 219 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753–1936 (2006). Dynamics of dark energy. arXiv:hep-th.0603057

    Article  MATH  MathSciNet  Google Scholar 

  17. Ryan, M.P.: Hamiltonian cosmology. Springer, Berlin (1972)

    Google Scholar 

  18. Kodama, H.: Progress of Theor. Phys. 80, 1024 (1988)

    Article  MathSciNet  Google Scholar 

  19. Kodama, H.: Phys. Rev D 42, 2548 (1990)

    Article  MathSciNet  Google Scholar 

  20. Chimento, L. P.: Phys. Rev. D 69, 123517 (2004)

    Article  MathSciNet  Google Scholar 

  21. Scherrer, R. J.: Phys. Rev. Lett. 93, 011301 (2004)

    Article  Google Scholar 

  22. Arroja, F., Sasaki, M.: Phys. Rev. D 81, 107301 (2010)

    Article  Google Scholar 

  23. De-Santiago, J., Cervantes-Cota, J.L.: Phys. Rev. D 83, 063502 (2011)

    Article  Google Scholar 

  24. Madsen, M.: Class. Quantum Grav. 5, 627 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pimentel, L.O.: Class. Quantum Grav. 6, L263 (1989)

    Article  MathSciNet  Google Scholar 

  26. Hartle, J., Hawking, S.W.: Phys. Rev. D 28, 2960 (1983)

    Article  MathSciNet  Google Scholar 

  27. Polyanin, A. C., Zaitsev, V. F.: Handbook of Exact solutions for ordinary differential equations, 2nd edn. Chapman & Hall/CRC (2003)

  28. Guzmán, W., Sabido, M., Socorro, J., Ureña-López, L. A.: Int. J. Mod. Phys. D 16(4), 641–653 (2007). arXiv:gr-qc/0506041

    Article  MATH  Google Scholar 

  29. Moniz, P.: Quantum Cosmology: The Supersymmetric Perspective, Vol 1 and 2, Lecture Notes in Physics 803 and 804. Springer (2010)

  30. Obregón, O., Socorro, J.: Int. J. Theor. Phys. 35, 1381 (1996). Ψ = W e ±Φ quantum cosmological solutions for class A Bianchi models. arXiv:gr-qc/9506021

    Article  MATH  Google Scholar 

  31. Hawking, S.W.: Nucl. Phys. B239, 257 (1984)

    Article  MathSciNet  Google Scholar 

  32. Asano, M., Tanimoto, M., Yoshino, N.: Phys. Lett. B 314, 303 (1993)

    Article  MathSciNet  Google Scholar 

  33. Lidsey, J.E.: Phys. Rev. D 49, R599 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by CONACYT 167335, 179881 grants. PROMEP grants UGTO-CA-3 and UAM-I-43. A.E.G. is supported by a CONACYT graduate fellowship. This work is part of the collaboration within the Instituto Avanzado de Cosmología and Red PROMEP: Gravitation and Mathematical Physics under project Quantum aspects of gravity in cosmological models, phenomenology and geometry of space-time. Many calculations where done by Symbolic Program REDUCE 3.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis O. Pimentel.

Appendix: Energy Momentum Tensor

Appendix: Energy Momentum Tensor

The energy momentum tensor of the K-essence scalar field has the form (5)

$$ \mathrm \mathcal{T}_{\alpha \beta}=f(\phi)\left[\mathcal{G}_{X} \phi_{,\alpha}\phi_{,\beta} + \mathcal{G}(X)g_{\alpha \beta} \right], $$
(49)

the covariant derivative of which is

$$\begin{array}{rcl} \mathrm\mathcal{T}_{\alpha\beta}^{\;\; ;\beta}&=&\left[f\left(\mathcal{G}_{X}\phi_{,\alpha}\phi_{,\beta}+\mathcal{G}g_{\alpha\beta}\right)\right]^{;\beta}\\ &=&\mathrm f\left(\mathcal{G}_{X}\phi_{,\alpha}\phi_{,\beta}+\mathcal{G}g_{\alpha\beta}\right)^{;\beta}+\left(\mathcal{G}_{X}\phi_{,\alpha}\phi_{,\beta}+\mathcal{G}g_{\alpha\beta}\right)f^{;\beta}\\ &=&\mathrm f\left[\mathcal{G}_{X}\left(\phi_{,\alpha}\phi_{,\beta}\right)^{;\beta}+\phi_{,\alpha}\phi_{,\beta}\mathcal{G}_{X}^{\;\; ;\beta}+g_{\alpha\beta}\mathcal{G}^{;\beta}\right]+\left(\mathcal{G}_{X}\phi_{,\alpha}\phi_{,\beta}+\mathcal{G}g_{\alpha\beta}\right)\frac{df}{d\phi}\phi^{,\beta}\\ &=&\mathrm f\left[\mathcal{G}_{X}\left(\phi_{,\alpha}\phi^{\;\; ;\beta}_{,\beta}+\phi_{,\beta}\phi_{,\alpha}^{\;\; ;\beta}\right)+\phi_{,\alpha}\phi_{,\beta}\mathcal{G}_{XX}X^{;\beta}+\mathcal{G}_{X}X^{;\beta}g_{\alpha\beta}\right]\\ &&+\left(\mathcal{G}_{X}\phi_{,\alpha}\phi_{,\beta}+\mathcal{G}g_{\alpha\beta}\right)\frac{df}{d\phi}\phi^{,\beta}\\ &=&\mathrm \phi_{,\alpha}\left\{f\left[\mathcal{G}_{X}\phi_{,\beta}^{\;\; ;\beta}+\mathcal{G}_{XX}X^{;\beta}\phi_{,\beta}\right]+\frac{df}{d\phi}\left[\mathcal{G}-2X\mathcal{G}_{X}\right]\right\}+f\mathcal{G}_{X}\left(\phi_{,\beta}\phi_{,\alpha}^{\;\; ;\beta}+g_{\alpha\beta}X^{;\beta}\right)\\ &=&\mathrm f\mathcal{G}_{X}\left(\phi_{,\beta}\phi_{,\alpha}^{\;\; ;\beta}+g_{\alpha\beta}X^{;\beta}\right) \\ &=&0, \end{array} $$
(50)

where the term inside the curly brackets is null according to the field equation for the scalar field.

Now, making the identifications

$$ \mathrm{P(X)}=f(\phi) \mathcal{G}(X), \quad \rho(X)=f(\phi)\left[2X\mathcal{G}_{X}-\mathcal{G}(X) \right], \quad u_{\alpha}= \frac{\phi_{,\alpha}}{\sqrt{2X}} $$
(51)

it is easy to show that

$$ \left[\rho(X)+P(X)\right]u_{\alpha}u_{\beta}+P(X)g_{\alpha\beta}=f\left(\mathcal{G}_{X}\phi_{,\alpha}\phi_{,\beta}+\mathcal{G}g_{\alpha\beta}\right)=\mathcal{T}_{\alpha\beta} $$
(52)

which establishes an analogy with the energy momentum tensor of a perfect fluid (see (6)).

In the case of the SB scalar field (\(\mathrm \mathcal {G}(X)=X\)) it can be seen from the general identification (51) that P(X) = ρ(X), which means that the energy momentum tensor (6) for this restricted model has the structure of a stiff fluid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinoza-García, A., Socorro, J. & Pimentel, L.O. Quantum Bianchi Type IX Cosmology in K-Essence Theory. Int J Theor Phys 53, 3066–3077 (2014). https://doi.org/10.1007/s10773-014-2102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2102-0

Keywords

Navigation