Skip to main content
Log in

Quantum Key Agreement Against Collective Decoherence

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A robust and efficient quantum key agreement (QKA) protocol is presented with decoherence-free (DF) states and single-particle measurements. Compared with all the previous QKA protocols, which are designed in ideal condition, this protocol can not only guarantee both the security and fairness of the shared key but also be immune to collective decoherence. In addition, our protocol has a high intrinsic efficiency due to the utilization of the delayed measurement technique. Finally, we show that the proposed protocol is secure against the attacks from both outside eavesdroppers and inside dishonest participants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Trappe, W., Wang, Y., Liu, K.J.R.: Resource-aware conference key establishment for heterogeneous networks. IEEE/ACM Trans. Netw. 13, 134–146 (2005)

    Article  Google Scholar 

  2. Steiner, M., Tsudik, G., Waidne, M.: Key agreement in dynamic peer groups. IEEE Trans. Parallel Distrib. Syst. 11, 769 (2000)

    Article  Google Scholar 

  3. Tseng, Y.M.: Weakness in simple authenticated key agreement protocol. Electron. Lett. 36, 48 (2000)

    Article  Google Scholar 

  4. Menezes, A.J., Oorscot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  5. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE, Los Alamitos (1994)

  6. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219. ACM, Philadelphiapp (1996)

  7. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    ADS  Google Scholar 

  8. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal, pp. 175–179. IEEE, Bangalore (1984)

  9. Sikora, J.: On the existence of loss-tolerant quantum oblivious transfer protocols. Quantum Inf. Comput. 12(7–8), 609–619 (2012)

    MATH  MathSciNet  Google Scholar 

  10. Ma, J.J. et al.: Semi-loss-tolerant strong coin flipping protocol using EPR pairs. Quantum Inf. Comput. 12(5–6), 490–501 (2012)

    MATH  MathSciNet  Google Scholar 

  11. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    ADS  MATH  MathSciNet  Google Scholar 

  12. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    ADS  Google Scholar 

  13. Guo, F.Z., Qin, S.J., Gao, F., et al.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445 (2010)

    ADS  Google Scholar 

  14. Tan, Y.G., Cai, Q.Y.: Practical decoy state quantum key distribution with finite resource. Eur. Phys. J. D 56, 449–455 (2010)

    ADS  Google Scholar 

  15. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: On the information-splitting essence of two types of quantum key distribution protocols. Phys. Lett. A 355, 172–175 (2006)

    ADS  MATH  Google Scholar 

  16. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    ADS  Google Scholar 

  17. Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)

    ADS  Google Scholar 

  18. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149 (2004)

    Google Scholar 

  19. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50, 1793–1802 (2011)

    MATH  MathSciNet  Google Scholar 

  20. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    ADS  Google Scholar 

  21. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process 12, 921–932 (2013)

    ADS  MATH  MathSciNet  Google Scholar 

  22. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process 12, 1797–1805 (2013)

    ADS  MATH  MathSciNet  Google Scholar 

  23. Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36 (1991)

    Google Scholar 

  24. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198 (1996)

    ADS  Google Scholar 

  25. Wang, X.B.: Quantum error-rejection code with spontaneous parametric down-conversion. Phys. Rev. A 69, 022320 (2004)

    ADS  Google Scholar 

  26. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)

    ADS  Google Scholar 

  27. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290, 498 (2000)

    ADS  Google Scholar 

  28. Ollerenshaw, J.E., Lidar, D.A., Kay, L.E.: Magnetic resonance realization of decoherence-free quantum computation. Phys. Rev. Lett. 91, 217904 (2003)

    ADS  Google Scholar 

  29. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56, 1670–1678 (2013)

    ADS  Google Scholar 

  30. Cabello, A.: Six-qubit permutation-based decoherence-free orthogonal basis. Phys. Rev. A 75, 020301 (2007)

    ADS  MathSciNet  Google Scholar 

  31. Huang, W., Wen, Q.Y., Liu, B., Gao, F.: A general method for constructing unitary operations for protocols with collective detection and new QKD protocols against collective noise. e-print arXiv:quant-ph/1210.1332v2 (2012)

  32. Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92, 017901 (2004)

    ADS  Google Scholar 

  33. Huang, W., Wen, Q.Y., Jia, H.Y., Qin, S.J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21, 100308 (2012)

    ADS  Google Scholar 

  34. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    ADS  Google Scholar 

  35. Zhang, Z.J.: Robust multiparty quantum secret key sharing over two collective-noise channels. Phys. A 361, 233–238 (2006)

    ADS  Google Scholar 

  36. Li, Y.B., Qin, S.J., Zheng, Y., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quantum Inf. Process. 12, 2191–2205 (2012)

    ADS  Google Scholar 

  37. Huang, W., Guo, F.Z., Huang, Z., Wen, Q.Y., Zhu, F.C.: Three-particle QKD protocol against a collective noise. Opt. Commun. 284, 536–540 (2011)

    ADS  Google Scholar 

  38. Yang, Y.G., Wen, Q.Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283, 3198–3201 (2010)

    ADS  Google Scholar 

  39. Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11, 455–463 (2012)

    ADS  MathSciNet  Google Scholar 

  40. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13, 649–663 (2012). doi:10.1007/s11128-013-0680-z

  41. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097 (2004)

    ADS  Google Scholar 

  42. Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C., et al.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004)

    ADS  Google Scholar 

  43. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 28, 656–715 (1949)

    MATH  MathSciNet  Google Scholar 

  44. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the brádler-dušek protocol. Quant. Inf. Comput. 7, 329–334 (2007)

    MATH  MathSciNet  Google Scholar 

  45. Gao, F., Qin, S.J., Wen, Q.Y.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)

    ADS  MATH  Google Scholar 

  46. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett. 101, 208901 (2008)

    ADS  Google Scholar 

  47. Huang, W., Zuo, H.J., Li, Y.B.: Cryptanalysis and improvement of a multi-user quantum communication network using X -type entangled states. Int. J. Theor. Phys. 52, 1354–1361 (2013)

    Google Scholar 

  48. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    ADS  Google Scholar 

  49. Deutsch, D., Ekert, A., Jozsa, R., et al.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)

    ADS  Google Scholar 

  50. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    ADS  Google Scholar 

  51. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    ADS  Google Scholar 

  52. Chen, Z.W., Zhao, B., Chen, Y.A., Schmiedmayer, J., Pan, J.W.: Fault-tolerant quantum repeater with atomic ensembles and linear optics. Phys. Rev. A 76, 022329 (2007)

    ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant Nos. 61272057, 61170270, 61100203, 61003286, 61121061, 61103210), NCET (Grant No. NCET-10-0260), SRFDP (Grant No. 2009000 5110010), CPSF (Grant No. 2013M530561), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant No. 2011YB01), BUPT Excellent Ph.D. Students Foundation (Grant No. CX201334) and Beijing Higher Education Young Elite Teacher Project (Grant Nos. YETP0475, YETP0477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Su, Q., Wu, X. et al. Quantum Key Agreement Against Collective Decoherence. Int J Theor Phys 53, 2891–2901 (2014). https://doi.org/10.1007/s10773-014-2087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2087-8

Keywords

Navigation