Skip to main content
Log in

Faithful Remote Information Concentration Based on the Optimal Universal 1→2 Telecloning of Arbitrary Two-Qubit States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The previous protocols of remote quantum information concentration were focused on the reverse process of quantum telecloning of single-qubit states. We here investigate the reverse process of optimal universal 1→2 telecloning of arbitrary two-qubit states. The aim of this telecloning is to distribute respectively the quantum information to two groups of spatially separated receivers from a group of two senders situated at two different locations. Our scheme shows that the distributed quantum information can be remotely concentrated back to a group of two different receivers with 1 of probability by utilizing maximally four-particle cluster state and four-particle GHZ state as quantum channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wootters, W.K., Zurek, W.H.: Nature 299, 802 (1982)

    Article  ADS  Google Scholar 

  2. Dieks, D.: Phys. Lett. A 92, 271 (1982)

    Article  ADS  Google Scholar 

  3. Barnum, H., Caves, C.M., Fuchs, C.A., Jozsa, R., Schumacher, B.: Phys. Rev. Lett. 76, 2818 (1996)

    Article  ADS  Google Scholar 

  4. Bužek, V., Hillery, M.: Phys. Rev. A 54, 1844 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bruss, D., DiVincenzo, D.P., Ekert, A., Fuchs, C.A., Macchiavello, C., Smolin, J.A.: Phys. Rev. A 57, 2368 (1998)

    Article  ADS  Google Scholar 

  6. Cerf, N.J.: Phys. Rev. Lett. 84, 4497 (2000)

    Article  ADS  Google Scholar 

  7. Cerf, N.J.: J. Mod. Opt. 47, 187 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. Wang, X.W., Su, Y.H., Yang, G.J.: Chin. Phys. Lett. 27, 100303 (2010)

    Article  ADS  Google Scholar 

  9. Scarani, V., Iblisdir, S., Gisin, N., Acin, A.: Rev. Mod. Phys. 77, 1225 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Phys. Rev. A 59, 156 (1999)

    Article  ADS  Google Scholar 

  11. Keyl, M., Werner, R.F.: J. Math. Phys. 40, 3283 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Zanardi, P.: Phys. Rev. A 58, 3484 (1998)

    Article  ADS  Google Scholar 

  13. Murao, M., Plenio, M.B., Vedral, V.: Phys. Rev. A 61, 032311 (2000)

    Article  ADS  Google Scholar 

  14. Dür, W., Cirac, J.I.: J. Mod. Opt. 47, 247 (2000)

    Article  ADS  Google Scholar 

  15. Ghiu, I.: Phys. Rev. A 67, 012323 (2003)

    Article  ADS  Google Scholar 

  16. Wang, X.W., Yang, G.J.: Phys. Rev. A 79, 064306 (2009)

    Article  ADS  Google Scholar 

  17. Ghiu, I., Karlsson, A.: Phys. Rev. A 72, 032331 (2005)

    Article  ADS  Google Scholar 

  18. Chen, L., Chen, Y.X.: Quantum Inf. Comput. 7, 716 (2007)

    MATH  MathSciNet  Google Scholar 

  19. Wang, X.W., Yang, G.J.: Phys. Rev. A 79, 062315 (2009)

    Article  ADS  Google Scholar 

  20. Zhao, Z., Zhang, A.N., Zhou, X.Q., Chen, Y.A., Lu, C.Y., Karlsson, A., Pan, J.W.: Phys. Rev. Lett. 95, 030502 (2005)

    Article  ADS  Google Scholar 

  21. Bruß, D., Calsamiglia, J., Lütkenhaus, N.: Phys. Rev. A 63, 042308 (2001)

    Article  ADS  Google Scholar 

  22. Galvao, E.F., Hardy, L.: Phys. Rev. A 62, 022301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ricci, M., Sciarrino, F., Cerf, N.J., Filip, R., Fiurášek, J., De Martini, F.: Phys. Rev. Lett. 95, 090504 (2005)

    Article  ADS  Google Scholar 

  24. Lamoureux, L.P., Bechmann-Pasquinucci, H., Cerf, N.J., Gisin, N., Macchiavello, C.: Phys. Rev. A 73, 032304 (2006)

    Article  ADS  Google Scholar 

  25. Bennet, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  26. Peng, J.Y., Mo, Z.W.: Chin. Phys. B 22, 050310 (2013)

    Article  ADS  Google Scholar 

  27. Wang, X.W., Shan, Y.G., Xia, L.X., Lu, M.W.: Phys. Lett. A 364, 7 (2007)

    Article  ADS  MATH  Google Scholar 

  28. Ekert, A.: Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Peng, J.Y., Mo, Z.W.: Int. J. Quantum Inf. 11, 1350004 (2013)

    Article  MathSciNet  Google Scholar 

  30. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Opt. Commun. 283, 4796 (2010)

    Article  ADS  Google Scholar 

  31. Vedral, V., Plenio, M.B.: Prog. Quantum Electron. 22, 1 (1998)

    Article  ADS  Google Scholar 

  32. Peng, J.Y., Luo, M.X., Mo, Z.W.: Quantum Inf. Process. 12, 2325 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Am. J. Phys. 58, 1131 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Bose, S., Vedral, V., Knight, P.L.: Phys. Rev. A 57, 882 (1998)

    Article  ADS  Google Scholar 

  35. Peng, J.Y., Luo, M.X., Mo, Z.W.: Int. J. Theor. Phys. 52, 253 (2013)

    Article  MATH  Google Scholar 

  36. Hayashi, A., Hashimoto, T., Horibe, M.: Phys. Rev. A 67, 052302 (2003)

    Article  ADS  Google Scholar 

  37. Bennet, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  38. Peng, J.Y., Luo, M.X., Mo, Z.W.: Int. J. Mod. Phys. B 27, 1350091 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  39. Peng, J.Y., Mo, Z.W.: Int. J. Theor. Phys. 52, 620 (2013)

    Article  MATH  Google Scholar 

  40. Grover, L.K.: Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  41. Murao, M., Vedral, V.: Phys. Rev. Lett. 86, 352 (2001)

    Article  ADS  Google Scholar 

  42. Yu, Y.F., Feng, J., Zhan, M.S.: Phys. Rev. A 68, 024303 (2003)

    Article  ADS  Google Scholar 

  43. Chen, Y.H., Yu, Y.F., Zhang, Z.M.: Chin. Phys. Lett. 23, 3158 (2006)

    Article  ADS  Google Scholar 

  44. Chen, Y.H., Zhang, D.Y., Gao, F., Zhan, X.G.: Chin. Phys. Lett. 26, 090304 (2009)

    Article  ADS  Google Scholar 

  45. Augusiak, R., Horodecki, P.: Phys. Rev. A 73, 012318 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  46. Wang, X.W., Zhang, D.Y., Yang, G.J., Tang, S.Q., Xie, L.J.: Phys. Rev. A 84, 042310 (2011)

    Article  ADS  Google Scholar 

  47. Hsu, L.Y.: Phys. Rev. A 76, 032311 (2007)

    Article  ADS  Google Scholar 

  48. Wang, X.W., Tang, S.Q.: Open. J. Microphys. 3, 18 (2013)

    Article  ADS  Google Scholar 

  49. Wang, X.W., Tang, S.Q., Xie, L.J., Zhang, D.Y., Kuang, L.M.: Quantum Inf. Comput. 14, 0122 (2014)

    Google Scholar 

  50. Chen, L., Chen, Y.X.: Quantum Inf. Comput. 7, 716 (2007)

    MATH  MathSciNet  Google Scholar 

  51. Raussendorf, R., et al.: Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  52. Zheng, X.J., Xu, H., Fang, M.F., Zhu, K.C.: Chin. Phys. B 19, 034207 (2010)

    Article  ADS  Google Scholar 

  53. Du, G., Lai, B.H., Yu, Y.F., Zhang, Z.M.: Chin. Phys. Lett. 26, 104201 (2009)

    Article  ADS  Google Scholar 

  54. Lu, C.Y., Zhou, X.Q., Gühne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebel, A., Yang, T., Pan, J.W.: Nat. Phys. 3, 91 (2007)

    Article  Google Scholar 

  55. Wang, X.W., Cao, S., Xia, L.X.: Commun. Theor. Phys. 49, 1217 (2007)

    ADS  Google Scholar 

  56. Reichle, R., Leibfrie, D., Knill, E., Britton, J., Blakestad, R.B., Jost, J.D., Langer, C., Ozeri, R., Seidelin, S., Wineland, D.J.: Nature 443, 838 (2006)

    Article  ADS  Google Scholar 

  57. Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.M., Monroe, C.: Science 323, 486 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant No. 11071178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Yin Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, JY., Lei, HX. & Mo, ZW. Faithful Remote Information Concentration Based on the Optimal Universal 1→2 Telecloning of Arbitrary Two-Qubit States. Int J Theor Phys 53, 1637–1647 (2014). https://doi.org/10.1007/s10773-013-1961-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1961-0

Keywords

Navigation