Skip to main content
Log in

N-Midpoint Rule for Calculating the Effective Mesonic Potential at Finite Temperature

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The temperature dependence of meson properties is studied by using the effective potential formalism. The effective mesonic potential is numerically calculated using the n-midpoint rule at finite temperature. The meson masses, the phase transition, and the energy density are investigated as functions of temperature. The obtained results are compared with those from other works. The present technique is compared with the Hartree approximation and the imaginary time formalism. We conclude that the calculated effective potential successfully predicts the meson properties, the phase transition, and the critical temperature in comparison with other models and avoid the difficulty that found in the Hartree approximation which depends on cutoff technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fukugita, M.: Nucl. Phys. B 4, 105 (1988)

    Article  Google Scholar 

  2. Karsch, F.: Nucl. Phys. A 590, 367 (1995)

    Article  ADS  Google Scholar 

  3. Stenlund, E., Gustafsson, H.A., Oskarsson, A., Otterlund, I.: Nucl. Phys. A 566, 1c (1994)

    Article  ADS  Google Scholar 

  4. Asakawa, M., Yazaki, K.: Nucl. Phys. A 504, 668 (1989)

    Article  Google Scholar 

  5. Berges, J., Rajagopal, K.: Nucl. Phys. B 538, 215 (1999)

    Article  ADS  Google Scholar 

  6. Scavenius, O., Mocsy, A., Mishustin, I.N., Rischke, D.H.: Phys. Rev. C, Nucl. Phys. 64, 045202 (2001)

    Article  ADS  Google Scholar 

  7. Petropoulos, N.: J. Phys. G 25, 2225 (1999)

    Article  ADS  Google Scholar 

  8. Nemoto, Y., Naito, K., Oka, M.: Eur. Phys. J. A 9, 245 (2000)

    Article  ADS  MATH  Google Scholar 

  9. Abu-Shady, M.: Int. J. Theor. Phys. 49, 2425 (2010)

    Article  MATH  Google Scholar 

  10. Abu-Shady, M., Mansour, H.: Phys. Rev. C, Nucl. Phys. 85, 055204 (2012)

    Article  ADS  Google Scholar 

  11. Abu-Shady, M.: Int. J. Mod. Phys. E 21, 125006 (2012)

    Article  Google Scholar 

  12. de Forcrand, Ph., Philipsen, O.: Nucl. Phys. B 642, 290 (2002)

    Article  ADS  MATH  Google Scholar 

  13. Fodor, Z., Katz, S.D.: J. High Energy Phys. 0203, 014 (2002)

    Article  ADS  Google Scholar 

  14. Gell-Mann, M., Levy, M.: Nuovo Cimento 16, 705 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  15. Amelino-Camelia, G., Pi, S.Y.: Phys. Rev. D 47, 2356 (1993)

    Article  ADS  Google Scholar 

  16. Amelino-Camelia, G.: Phys. Lett. B 407, 268 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  17. Lenaghan, J.T., Rischke, D.H.: J. Phys. G 26, 431 (2000)

    Article  ADS  Google Scholar 

  18. Cornwall, J.M., Jackiw, R., Tomboulis, E.: Phys. Rev. D, Part. Fields 10, 2428 (1974)

    Article  ADS  MATH  Google Scholar 

  19. Baacke, J., Michalski, S.: Phys. Rev. D, Part. Fields 67, 085006 (2003)

    Article  ADS  Google Scholar 

  20. Birse, M., Banerjee, M.: Phys. Rev. D 31, 118 (1985)

    Article  ADS  Google Scholar 

  21. Nahrgang, M., Bleicher, M.: Acta Phys. Pol. B 2, 405 (2009)

    Google Scholar 

  22. Jogerman, D.: Math. Comput. 20, 79 (1966)

    Article  Google Scholar 

  23. Stetter, F.: Math. Comput. 22, 66 (1966)

    Google Scholar 

  24. Dolan, L., Jackiw, R.: Phys. Rev. D, Part. Fields 9, 12 (1974)

    Google Scholar 

  25. Bilic, N., Nikolic, H.: Eur. Phys. J. C 6, 513 (1999)

    Article  ADS  Google Scholar 

  26. Abu-Shady, M.: J. Fract. Calc. Appl. 3(S), 6 (2012)

    Google Scholar 

  27. Berger, J., Christov, C.: Nucl. Phys. A 609, 537 (1996)

    Article  ADS  Google Scholar 

  28. Bowman, E.S., Kapusta, J.I.: nucl-th/0800042 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abu-Shady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abu-Shady, M. N-Midpoint Rule for Calculating the Effective Mesonic Potential at Finite Temperature. Int J Theor Phys 52, 1165–1174 (2013). https://doi.org/10.1007/s10773-012-1432-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1432-z

Keywords

Navigation