Skip to main content
Log in

Epistemic Entanglement due to Non-generating Partitions of Classical Dynamical Systems

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum entanglement relies on the fact that pure quantum states are dispersive and often inseparable. Since pure classical states are dispersion-free they are always separable and cannot be entangled. However, entanglement is possible for epistemic, dispersive classical states. We show how such epistemic entanglement arises for epistemic states of classical dynamical systems based on phase space partitions that are not generating. We compute epistemically entangled states for two coupled harmonic oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allahverdyan, A.E., Khrennikov, A., Nieuwenhuizen, T.M.: Brownian entanglement. Phys. Rev. A 72, 032102 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  2. Atmanspacher, H.: Quantum approaches to consciousness. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy (2011). plato.stanford.edu/entries/qt-consciousness/

    Google Scholar 

  3. Atmanspacher, H., Primas, H.: Epistemic and ontic quantum realities. In: Castell, L., Ischebeck, O. (eds.) Time, Quantum and Information, pp. 301–321. Springer, Berlin (2003)

    Google Scholar 

  4. Atmanspacher, H., Filk, T., beim Graben, P.: Can classical epistemic states be entangled? In: Song, D., et al. (eds.) Quantum Interaction—QI 2011, pp. 105–115. Springer, Berlin (2011)

    Chapter  Google Scholar 

  5. Bollt, E.M., Stanford, T., Lai, Y.C., Życzkowski, K.: What symbolic dynamics do we get with a misplaced partition? On the validity of threshold crossings analysis of chaotic time-series. Physica D 154, 259–286 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bruza, P.D., Kitto, K., Nelson, D., McEvoy, C.L.: Is there something quantum-like about the human mental lexicon? J. Math. Psychol. 53, 362–377 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cornfeld, I.P., Fomin, S.V., Sinai, Y.G.: Ergodic Theory. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  8. Dvurečenskij, A., Pulmannová, S., Svozil, K.: Partition logics, orthoalgebras and automata. Helv. Phys. Acta 68, 407–428 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  10. Foulis, D.J.: A half-century of quantum logic. What have we learned? In: Aerts, D. (ed.) Quantum Structures and the Nature of Reality, Einstein Meets Magritte: An Interdisciplinary Reflection on Science, Nature, Art, Human Action and Society, vol. 7, pp. 1–36. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  11. van Gelder, T.: The dynamical hypothesis in cognitive science. Brain Behav. Sci. 21, 1–14 (1998)

    Google Scholar 

  12. beim Graben, P., Atmanspacher, H.: Complementarity in classical dynamical systems. Found. Phys. 36, 291–306 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. beim Graben, P., Atmanspacher, H.: Extending the philosophical significance of the idea of complementarity. In: Atmanspacher, H., Primas, H. (eds.) Recasting Reality. Wolfgang Pauli’s Philosophical Ideas and Contemporary Science, pp. 99–113. Springer, Berlin (2009)

    Chapter  Google Scholar 

  14. Khrennikov, A.Y.: Representation of the Kolmogorov model having all distinguishing features of quantum probabilistic model. Phys. Lett. A 316(5), 279–296 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Khrennikov, A.Y.: Ubiquitous Quantum Structure: From Psychology to Finance. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  16. Kolmogorov, A.N.: New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces. Dokl. Russ. Acad. Sci. 119, 861–864 (1958)

    MathSciNet  MATH  Google Scholar 

  17. Lind, D.A., Marcus, B.: An Introduction to Symbolic Dynamics. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  18. Pauli, W.: Die philosophische Bedeutung der Idee der Komplementarität. Experientia 6, 72–81 (1950). English translation: The philosophical significance of the notion of complementarity. In: Enz, C.P., von Meyenn, K. (eds.) Wolfgang Pauli. Writings on Physics and Philosophy, pp. 35–42 Springer, Berlin (1994)

    Article  Google Scholar 

  19. Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555–563 (1935)

    Article  ADS  Google Scholar 

  20. Sinai, Y.G.: On the concept of entropy of a dynamical system. Dokl. Russ. Acad. Sci. 124, 768–771 (1959)

    MathSciNet  MATH  Google Scholar 

  21. Svozil, K.: Logical equivalence between generalized urn models and finite automata. Int. J. Theor. Phys. 44, 745–754 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Walters, P.: Introduction to Ergodic Theory. Springer, Berlin (1981)

    Google Scholar 

  23. Wright, R.: Generalized urn models. Found. Phys. 20, 881–903 (1990)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the Franklin Fetzer Fund and by a DFG Heisenberg grant awarded to PbG (GR 3711/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter beim Graben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

beim Graben, P., Filk, T. & Atmanspacher, H. Epistemic Entanglement due to Non-generating Partitions of Classical Dynamical Systems. Int J Theor Phys 52, 723–734 (2013). https://doi.org/10.1007/s10773-012-1381-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1381-6

Keywords

Navigation