Skip to main content
Log in

Microstructural, Structural, and Thermal Characterization of Annealed Carbon Steels

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

An Erratum to this article was published on 27 April 2017

Abstract

As is well known, the metallurgical microstructure of carbon steel is formed by ferrite and pearlite after the annealing heat treatment. When the cooling rate increases, the diffusive process is interrupted causing a change in the metallurgical microstructure which will affect steel properties. The aim of this work was to study thermal, structural, and microstructural properties of annealed carbon steel samples with four different carbon contents. Crystalline structure and crystalline quality were studied by the X-ray diffraction technique, where the full width at half maximum analysis showed that as the carbon content increased, the crystalline quality decreased. The metallurgical microstructure morphology was studied by scanning electron microscopy. The thermal diffusivity and the heat capacity were determined by the photoacoustic technique and by the thermal relaxation method, respectively. The thermal diffusivity and the thermal conductivity decreased as the carbon content increased. The amplitude signal of photothermal radiometry increased as the carbon content increased, while the phase signal of photothermal radiometry did not show significant differences among studied carbon steel types. The photoacoustic technique represents an important alternative in the steel characterization field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Curiel-Reyna, A. Herrera, V. Castaño, M.E. Rodriguez, Mater. Manuf. Process. 21, 1 (2006)

    Article  Google Scholar 

  2. H. Ariza-Calderón, F. Gordillo-Delgado, Rev. Acad. Colomb. Cienc. 31, 119 (2007)

    Google Scholar 

  3. M.E. Rodriguez, O. Zelaya- Angel, J.J. Pérez-Bueno, S. Jiménez-Sandoval, L. Tirado, J. Cryst. Growth 213, 3 (2000)

    Article  Google Scholar 

  4. S. Pandhija, N.K. Rai, A.K. Singh, A.K. Rai, R. Gopal, Prog. Cryst. Growth Char. Mater. 52, 1 (2006)

    Article  Google Scholar 

  5. C. Vasquez-López, A. Calderon, M.E. Rodriguez, E. Velasco, S. Cano, R. Colas, S. Valtierra, J. Mater. Res. 15, 1 (2000)

    Article  Google Scholar 

  6. J.J. Perez-Bueno, M.E. Rodriguez, O. Zelaya-Angel, R. Baquero, J. Gonzalez-Hernandez, L. Baños, B.J. Fitzpatrick, J. Cryst. Growth 209, 4 (2000)

    Article  Google Scholar 

  7. I. Rojas-Rodriguez, D. Jaramillo-Vigueras, R. Velazquez-Hernandez, A. del Real, I. Serroukh, L. Baños, J. Garcia, M.E. Rodriguez-Garcia, Mater. Manuf. Process. 23, 8 (2008)

    Article  Google Scholar 

  8. A. Lara-Guevara, I. Rojas-Rodriguez, R. Velazquez- Hernandez, R.A. Bernal-Correa, A. Sierra-Gutierrez, A. Herrera, M.E. Rodriguez-Garcia, Mater. Manuf. Process. 28, 2 (2013)

    Article  Google Scholar 

  9. T. Rangel-Ortiz, F. Chavez-Alcala, E. Curiel-Reyna, A. del Real, L. Baños, J. Lopez-Hirata, M.E. Rodriguez-Garcia, Mater. Manuf. Process. 22, 2 (2007)

    Article  Google Scholar 

  10. D.M. Moore, R.C. Jr Reynolds, X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd edn. (Oxford University Press, Oxford, 1997)

    Google Scholar 

  11. A.R. Bailey, The Structure and Strength of Metals, Annotated Metallographic Specimens (Gatwick Press Ltd., Betchworth, 1967)

    Google Scholar 

  12. A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 1 (1976)

    Article  Google Scholar 

  13. D.T. Dias, V.C. Bedeschi, A. Ferreira da Silva, O. Nakamura, M.V. Castro Meira, V.J. Trava-Airoldi, Diam. Relat. Mater. 48, 1 (2014)

    Article  ADS  Google Scholar 

  14. J. Yao, L.V. Wang, Photoacoustics 2, 2 (2014)

    Article  Google Scholar 

  15. L. Demkó, I. Kézsmárki, M. Csontos, S. Bordács, G. Mihály, Euro. Phys. J. B 74, 27–33 (2010)

    Article  ADS  Google Scholar 

  16. G. Busse, in Springer Series Topics in Current Physics, ed. by P. Hess (Springer, Heidelberg, 1989), p. 251

    Google Scholar 

  17. G. Busse, H.G. Walther, Progress of Photothermal and Photoacoustic Science and Technology (Elsevier, New York, 1992)

    Google Scholar 

  18. W.D. Callister Jr., D.G. Rethwisch, Materials Science and Engineering: An Introduction (Wiley, Hoboken, 2012)

    Google Scholar 

  19. I. Rojas-Rodriguez, R. Velazquez, M.E. Rodriguez-Garcia, Int. J. Thermophys. 33, 12 (2012)

    Article  Google Scholar 

  20. T. Masumura, N. Nakada, T. Tsuchiyama, S. Takaki, T. Koyano, K. Adachi, Acta Mater. 84, 1 (2015)

    Article  Google Scholar 

  21. A. Mandelis, M. Munidasa, L. Nicolaides, NDT&E Int. 32, 8 (1999)

    Article  Google Scholar 

  22. J.H. Lienhard IV, J.H. Lienhard V, A Heat Transfer Textbook, 3rd edn. (Phlogiston Press, Cambridge, 2008)

    Google Scholar 

  23. X. Guo, K. Sivagurunathan, J.A. Garcia, A. Mandelis, A. Giunta, S. Milletari, Laser photothermal radiometric instrumentation for fast in-line industrial steel hardness inspection and case depth measurements. Appl. Opt. 48C, 11 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the project 115113 PAPIIT UNAM, Mexico. Authors wish to thank M.C. Alicia del Real and Dra. Beatriz Millan for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Rojas-Rodriguez.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10765-017-2233-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara-Guevara, A., Ortiz-Echeverri, C.J., Rojas-Rodriguez, I. et al. Microstructural, Structural, and Thermal Characterization of Annealed Carbon Steels. Int J Thermophys 37, 99 (2016). https://doi.org/10.1007/s10765-016-2105-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2105-6

Keywords

Navigation