Skip to main content
Log in

The Characteristic Curves of Water

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In 1960, E. H. Brown defined a set of characteristic curves (also known as ideal curves) of pure fluids, along which some thermodynamic properties match those of an ideal gas. These curves are used for testing the extrapolation behaviour of equations of state. This work is revisited, and an elegant representation of the first-order characteristic curves as level curves of a master function is proposed. It is shown that Brown’s postulate—that these curves are unique and dome-shaped in a double-logarithmic pT representation—may fail for fluids exhibiting a density anomaly. A careful study of the Amagat curve (Joule inversion curve) generated from the IAPWS-95 reference equation of state for water reveals the existence of an additional branch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. For applications in which computational speed is critical, it is advantageous to use the IAPWS-IF97 (“industrial formulation”), a faster executing simplified version of the IAPWS-95 equation [3, 4].

  2. Brown furthermore defined a number of second-order characteristic curves, but we shall not deal with them here.

  3. The derivations of the endpoint conditions and the terminal slopes are given in Appendix 2.

  4. If metastable states are excluded; otherwise, the endpoint is on the liquid spinodal.

  5. Equations of state matching the Thomas–Fermi asymptotics appear to be valid for materials at extremely high pressures as found in fusion plasmas and neutron stars [9]. Some researchers apply it to all states of aggregation, whereas others argue that this might be inappropriate for substances under terrestrial conditions where \(\lim _{p \rightarrow \infty } q_\mathrm{B}>\frac{5}{3}\) in nonplasma matter.

  6. The supporting arguments of Brown [5] are not fully justified. Beyond the three laws of thermodynamics and the (physically reasonable) entropy condition \(\lim _{p \rightarrow \infty } (\partial S/\partial T)_p = 0\), he assumed the additional condition \(\lim _{p \rightarrow \infty } Z / p = v_\mathrm{min}(T)/RT >0\) at constant T, which is inappropriate in view of Thomas–Fermi theory.

  7. This was claimed by Brown [5], based on the following—not convincing—argument: At a hypothetical point where two of the curves intersect, we must have \(c_{T} = Z/c_\kappa = 1\), hence all three curves intersect. Brown concluded without sufficient reason that Z should therefore attain a global minimum there, and that this is impossible.

  8. with respect to crystallization; the melting pressure curve in Fig. 4 consists of several segments, as ice undergoes several phase changes with increasing pressure (ice I \(\rightarrow \) III \(\rightarrow \) V \(\rightarrow \) VI \(\rightarrow \) VII) [1].

  9. The IAPWS-95 equation is officially valid up to 1273 K.

Abbreviations

\(B_i\) :

ith virial coefficient

\(C_p\) :

Isobaric heat capacity

\(C_V\) :

Isochoric heat capacity

\(c_X\) :

(Dimensionless) thermodynamic response function, \(X \in \{p, V, T, \kappa \}\) (Eqs. 1415)

G :

Gibbs energy

\(\varvec{G}\) :

Hessian of \(G_\mathrm{m}(p, T)\)

H :

Configurational enthalpy

n :

Amount of substance

p :

Pressure

\(q_X\) :

Dimensionless logarithmic slope, \(X \in \{\mathrm{A, B, C}\}\) (Eqs. 1618)

R :

Universal gas constant

S :

Configurational entropy

T :

Temperature

U :

Configurational internal energy

V :

Volume

Z :

Compression factor, \(Z = p V_\mathrm{m}/(R T)\)

\(\alpha _p\) :

Isobaric thermal expansivity

\(\kappa _T\) :

Isothermal compressibility

\(\rho \) :

Molar density, \(\rho = V_\mathrm{m}^{-1}\)

\(\mathrm{A}\) :

Amagat (Joule inversion) curve

\(\mathrm{B}\) :

Boyle curve

\(\mathrm{c}\) :

Critical property

\(\mathrm{C}\) :

Charles (Joule–Thomson inversion) curve

\(\mathrm{m}\) :

Molar property

\(\mathrm{id}\) :

Ideal gas

\(\mathrm{g}\) :

Vapour phase

\(\mathrm{l}\) :

Liquid phase

References

  1. W. Wagner, A. Pruß, J. Phys. Chem. Ref. Data 31, 387 (2002)

    Article  ADS  Google Scholar 

  2. O. Kunz, R. Klimeck, W. Wagner, M. Jaeschke, The GERG-2004 Wide-Range Reference Equation of State for Natural Gases, vol. 15 of GERG (Groupe Européen de Recherches Gazières) Technical Monographs, VDI-Verlag, Düsseldorf (2007)

  3. W. Wagner, J.R. Cooper, A. Dittmann, J. Kijima, H.-J. Kretzschmar, A. Kruse, R. Mareš, K. Oguchi, H. Sato, I. Stöcker, O. Šifner, Y. Takaishi, I. Tanishita, J. Trübenbach, T. Willkommen, J. Eng. Gas Turbines Power 122, 150 (2000)

    Article  Google Scholar 

  4. W. Wagner, H.-J. Kretzschmar, International Steam Tables—Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97 (Springer, Berlin, 2008)

    Google Scholar 

  5. E .H. Brown, Bull. Int. Inst. Refrig. Paris Annex. 1960–1961, 169 (1960)

    Google Scholar 

  6. R. Span, W. Wagner, Int. J. Thermophys. 18, 1415 (1997)

    Article  ADS  Google Scholar 

  7. U.K. Deiters, K.M. de Reuck, Pure Appl. Chem. 69, 1237 (1997). doi:10.1351/pac199769061237

  8. J.P. Joule, W. Thomson, Phil. Mag. (Ser. 4) 4, 481 (1852)

    Google Scholar 

  9. J. Hama, K. Suito, J. Phys 8, 67 (1996)

    Google Scholar 

  10. P. Vinet, F. Ferrante, J.R. Smith, J.J. Rose, J. Phys. C 19, L467 (1986)

    Article  ADS  Google Scholar 

  11. V. Holten, J. Sengers, M.A. Anisimov, J. Phys. Chem. Ref. Data 43, 043101:1 (2014)

    Article  Google Scholar 

  12. J.S. Rowlinson, J. Chem. Phys. 19, 827 (1951)

    Article  ADS  Google Scholar 

  13. K.M. Benjamin, A.J. Schultz, D.A. Kofke, J. Phys. Chem. C 111, 16021 (2007)

    Article  Google Scholar 

  14. K.M. Benjamin, J.K. Singh, A.J. Schultz, D.A. Kofke, J. Phys. Chem. B 111, 11463 (2007)

    Article  Google Scholar 

  15. A.J. Schultz, D.A. Kofke, A.H. Harvey, AIChE J. 61, 3029 (2015)

    Article  Google Scholar 

  16. A. Schaber, Zum thermischen Verhalten fluider Stoffe—Eine systematische Untersuchung der charakteristischen Kurven des homogenen Zustandsgebiets, Ph.D. thesis, Technische Hochschule Karlsruhe, Germany (1965)

  17. M .P. Vukalovich, M .S. Trakhtengerts, G .A. Spiridonov, Teploenergetica 14, 65 (1967) (in Russian)

  18. G.S. Kell, G.E. McLaurin, E. Whalley, Proc. Royal Soc. Lond. 425, 49 (1989)

    Article  ADS  Google Scholar 

  19. I.M. Abdulagatov, A.R. Bazaev, R.K. Gasanov, A.E. Ramazanova, J. Chem. Thermodyn. 28, 1037 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold Neumaier.

Appendices

Appendix 1: Thermodynamic Derivatives

All derivatives are computed at constant amount of substance n.

isochoric tension coefficient:

$$\begin{aligned} \beta _V \equiv \left( \frac{\partial p}{\partial T} \right) _{V} = -\left( \frac{\partial p}{\partial V} \right) _{T} \left( \frac{\partial V}{\partial T} \right) _{P} = \frac{\alpha _p}{\kappa _T}. \end{aligned}$$
(26)

derivatives appearing in Eq. 19:

$$\begin{aligned} \left( \frac{\partial Z}{\partial T} \right) _{V}= & {} \frac{V}{n R T} \left( \frac{\partial p}{\partial T} \right) _{V} - \frac{p V}{n R T^2} = \frac{Z \alpha _p}{p \kappa _T} - \frac{Z}{T} = \frac{c_\kappa c_T - Z}{T},\nonumber \\ \left( \frac{\partial Z}{\partial p} \right) _{V}= & {} -\frac{p V}{n R T^2} \left( \frac{\partial T}{\partial p} \right) _{V} + \frac{V}{n R T} = \frac{Z}{p} \left( 1 - \frac{p \kappa _T}{T \alpha _p} \right) = \frac{Z}{p} \left( 1 - \frac{Z}{c_\kappa c_T} \right) ,\nonumber \\ \left( \frac{\partial Z}{\partial p} \right) _{T}= & {} \frac{p}{n R T} \left( \frac{\partial V}{\partial p} \right) _{T} + \frac{V}{n R T} = \frac{Z}{p} (1 - p \kappa _T) = \frac{Z}{p} \left( 1 - \frac{Z}{c_\kappa } \right) ,\nonumber \\ \left( \frac{\partial Z}{\partial V} \right) _{T}= & {} \frac{V}{n R T} \left( \frac{\partial p}{\partial V} \right) _{T} + \frac{p}{n R T} = \frac{p - \kappa _T^{-1}}{n R T} = \frac{Z - c_\kappa }{V},\nonumber \\ \left( \frac{\partial Z}{\partial T} \right) _{p}= & {} \frac{p}{n R T} \left( \frac{\partial V}{\partial T} \right) _{p} - \frac{p V}{n R T^2} = Z \alpha _p - \frac{Z}{T} = \frac{Z}{T} (c_T - 1),\nonumber \\ \left( \frac{\partial Z}{\partial V} \right) _{p}= & {} -\frac{p V}{n R T^2} \left( \frac{\partial T}{\partial V} \right) _{p} + \frac{p}{n R T} = \frac{Z}{V} \left( 1 - \frac{1}{T \alpha _p} \right) = \frac{Z}{V} \left( 1 - \frac{1}{c_T} \right) .\nonumber \\ \end{aligned}$$
(27)

Appendix 2: The Terminal Slopes of the Characteristic Curves at High Temperatures

Schaber presents expressions for the terminal slopes of Brown’s characteristic curves in his thesis [16], but does not give the proofs. For the readers’ convenience, these proofs are offered here.

For small pressures and large molar volumes the fluid can be described with a 3-term virial equation (cf. Eq. 20),

$$\begin{aligned} Z = 1 + \frac{B_2(T)}{V_\mathrm{m}} + \frac{B_3(T)}{V_\mathrm{m}^2}. \end{aligned}$$
(28)

The molar volume as a function of pressure is then, neglecting higher-order terms,

$$\begin{aligned} V_\mathrm{m}\approx \frac{R T}{p} + B_2(T) + \frac{p B_3(T)}{R T}. \end{aligned}$$
(29)

1.1 (a) The Terminal Slope of the Amagat Curve

Applying the first one of the Amagat criteria in Eq. 2 to the virial equation yields

$$\begin{aligned} \left( \frac{\partial Z}{\partial T} \right) _{V_\mathrm{m}} = \frac{B_2^\prime (T)}{V_\mathrm{m}} + \frac{B_3^\prime (T)}{V_\mathrm{m}^2} = 0 \end{aligned}$$

or

$$\begin{aligned} B_2^\prime (T) + \frac{B_3^\prime (T)}{V_\mathrm{m}} = 0. \end{aligned}$$
(30)

In the limit \(p \rightarrow 0\), \(V_\mathrm{m}\rightarrow \infty \) the second term can be neglected, and therefore \(B_2^\prime (T) = 0\) is the criterion for the endpoint of the Amagat curve, which corresponds to a maximum of the second virial coefficient.

Let \(T_\mathrm{A}\) denote the temperature of this endpoint, and \(\Delta T = T - T_\mathrm{A}\) and \(\Delta p = p\) the temperature and pressure deviations, respectively, from this point. Then, in the vicinity of \(T_\mathrm{A}\), \(B_2^\prime (T)\) can be approximated by

$$\begin{aligned} B_2^\prime (T) \approx B_2^{\prime \prime }(T_\mathrm{A}) \Delta T , \end{aligned}$$

where \(B_2^{\prime \prime }(T_\mathrm{A})\) denotes the curvature of the second virial coefficient function at the Amagat endpoint. Substituting this into Eq. 30 and switching from molar volume to pressure yields

$$\begin{aligned} B_2^{\prime \prime }(T_\mathrm{A}) \Delta T + \frac{B_3^\prime (T)}{\frac{R T}{\Delta p} + B_2 + \ldots } = 0 \end{aligned}$$

and, after some rearrangements,

$$\begin{aligned} \frac{\Delta p}{\Delta T} = - \frac{B_2^{\prime \prime }(T_\mathrm{A})}{B_3^\prime (T)} \left( R T + \Delta p B_2(T) + \ldots \right) . \end{aligned}$$

In the limit \(\Delta p \rightarrow 0, T \rightarrow T_\mathrm{A}\) this reduces to

$$\begin{aligned} \lim _{T \rightarrow T_\mathrm{A}} \frac{\mathrm{d}p}{\mathrm{d}T} \Big \vert _{q_\mathrm{R} = -\frac{1}{2}} = -\frac{B_2^{\prime \prime }(T_\mathrm{A}) R T_\mathrm{A}}{B_3^\prime (T_\mathrm{A})}. \end{aligned}$$
(31)

1.2 (b) The Terminal Slope of the Boyle Curve

Applying the criterion Eq. 5 to the virial equation gives

$$\begin{aligned} \left( \frac{\partial Z}{\partial V_\mathrm{m}} \right) _{T} = - \frac{B_2(T)}{V_\mathrm{m}^2} - \frac{2 B_3(T)}{V_\mathrm{m}^3} = 0 \end{aligned}$$

and hence

$$\begin{aligned} B_2(T) + \frac{2 B_3(T) p}{R T + B_2(T) p + \ldots } = 0. \end{aligned}$$
(32)

In the limit \(p \rightarrow 0\), this reduces to \(B_2 = 0\): At the endpoint of the Boyle curve, at the Boyle temperature \(T_\mathrm{B}\), the second virial coefficient vanishes.

Again using deviation variables, we can write the previous equation as

$$\begin{aligned} B_2^\prime (T_\mathrm{B}) \Delta T + \frac{2 B_3(T) \Delta p}{R T + \Delta p B_2(T) + \ldots } = 0. \end{aligned}$$

or

$$\begin{aligned} \frac{\Delta p}{\Delta T} = -\frac{B_2^\prime (T_\mathrm{B})}{2 B_3(T)} \left( R T + \Delta p B_2(T) + \ldots \right) . \end{aligned}$$

In the limit \(\Delta p \rightarrow 0, T \rightarrow T_\mathrm{B}\) this reduces to

$$\begin{aligned} \lim _{T \rightarrow T_\mathrm{B}} \frac{\mathrm{d}p}{\mathrm{d}T} \Big \vert _{q_\mathrm{R} = 0} = -\frac{B_2^\prime (T_\mathrm{B}) R T_\mathrm{B}}{2 B_3(T_\mathrm{B})}. \end{aligned}$$
(33)

1.3 (c) The Terminal Slope of the Charles Curve

For the derivation of this property, it is advantageous to start from the pressure-based virial equation of state,

$$\begin{aligned} Z = 1 + \bar{B}_2(T) p + \bar{B}_3(T) + p^2. \end{aligned}$$
(34)

The pressure-based virial coefficients are related to the volume-based ones by

$$\begin{aligned} \bar{B}_2(T) = \frac{B_2(T)}{R T} \quad \text {and} \quad \bar{B}_3(T) = \frac{B_3(T) - B_2^2(T)}{(R T)^2}. \end{aligned}$$
(35)

Applying the appropriate criterion in Eq. 8 gives

$$\begin{aligned} \left( \frac{\partial Z}{\partial T} \right) _{p} = \frac{p}{R T}\left( B_2^\prime (T) - \frac{B(T)}{T} \right) + \left( \frac{p}{R T} \right) ^2 \left( B_3^\prime (T) - \frac{2 B_3(T)}{T} - 2 B_2(T) B_2^\prime (T) + \frac{2 B_2^2(T)}{T} \right) = 0. \end{aligned}$$

or

$$\begin{aligned} B_2^\prime (T) - \frac{B_2(T)}{T} + \frac{p}{R T} \left( B_3^\prime (T) - \frac{2 B_3(T)}{T} - 2 B_2(T) B_2^\prime (T) + \frac{2 B_2^2(T)}{T} \right) = 0. \end{aligned}$$
(36)

The endpoint, at \(p \rightarrow 0\), is evidently characterized by \(B_2^\prime (T) - B_2(T)/T = 0\).

In order to obtain the terminal slope, we expand this criterion around the endpoint temperature \(T_\mathrm{C}\),

$$\begin{aligned} B_2^\prime (T) - \frac{B_2(T)}{T} \approx \left( B_2^{\prime \prime }(T_\mathrm{C}) - \frac{B_2^\prime (T_\mathrm{C})}{T_\mathrm{C}} + \frac{B_2(T_\mathrm{C})}{T_\mathrm{C}^2} \right) \Delta T = B_2^{\prime \prime }(T_\mathrm{C}) \Delta T. \end{aligned}$$

Then Eq. 36 becomes

$$\begin{aligned} B_2^{\prime \prime }(T_\mathrm{C}) \Delta T = -\frac{\Delta p}{R T} \left( B_3^\prime (T) -\frac{2 B_3(T)}{T} - 2 B_2(T) \left[ B_2(T)^\prime - \frac{B_2(T)}{T}\right] \right) = 0. \end{aligned}$$

In the limit \(\Delta p \rightarrow 0, T \rightarrow T_\mathrm{C}\), where the term in brackets vanishes, this yields the terminal slope,

$$\begin{aligned} \lim _{T \rightarrow T_\mathrm{C}} \frac{\mathrm{d}p}{\mathrm{d}T} \Big \vert _{q_\mathrm{R} = -\frac{1}{3}} = -\frac{B_2^{\prime \prime }(T_\mathrm{C}) R T_\mathrm{C}}{B_3^\prime (T_\mathrm{C}) - \frac{2}{T_\mathrm{C}} B_3(T_\mathrm{C})} . \end{aligned}$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neumaier, A., Deiters, U.K. The Characteristic Curves of Water. Int J Thermophys 37, 96 (2016). https://doi.org/10.1007/s10765-016-2098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2098-1

Keywords

Navigation