Skip to main content
Log in

Radiative Properties of Ceramic \(\hbox {Al}_{2}\hbox {O}_{3}\), AlN, and \(\hbox {Si}_{3}\hbox {N}_{4}\): I. Experiments

  • 19TH SYMPOSIUM OF THERMOPHYSICAL PROPERTIES
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The radiative properties of dense ceramic \(\hbox {Al}_{2}\hbox {O}_{3}\), AlN, and \(\hbox {Si}_{3}\hbox {N}_{4}\) plates are investigated from the visible to the mid-infrared region at room temperature. Each specimen has different surface finishings on different sides of the laminate. A monochromator was used with an integrating sphere to measure the directional-hemispherical reflectance and transmittance of these samples at wavelengths from 0.4 \(\upmu \hbox {m}\) to 1.8 \(\upmu \hbox {m}\). The specular reflectance was obtained by a subtraction technique. A Fourier-transform infrared spectrometer was used to measure the directional-hemispherical or specular reflectance and transmittance with appropriate accessories from about 1.6 \(\upmu \hbox {m}\) to 19 \(\upmu \hbox {m}\). All measurements were performed at near-normal incidence on either the smooth side or the rough side of the sample. The experimental observations are qualitatively interpreted considering the optical constants, surface roughness, and volume scattering and absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.M. Agrawal, M.P. Mengüç, Int. J. Heat Mass Transfer 34, 633 (1991)

    Article  ADS  Google Scholar 

  2. J. Moersch, P.R. Christensen, J. Geophys. Res. 100, 7465 (1995)

    Article  ADS  Google Scholar 

  3. L. Pilon, R. Viskanta, J. Am. Ceram. Soc. 86, 1313 (2003)

    Article  Google Scholar 

  4. L. Dombrovsky, J. Randrianalisoa, D. Baillis, L. Pilon, Appl. Opt. 44, 7021 (2005)

    Article  ADS  Google Scholar 

  5. D. Baillis, J.-F. Sacadura, J. Quant. Spectrosc. Radiat. Transfer 67, 327 (2000)

    Article  ADS  Google Scholar 

  6. B. Zeghondy, E. Iacona, J. Taine, Int. J. Heat Mass Transfer 49, 3702 (2006)

    Article  Google Scholar 

  7. S. Haussener, W. Lipiński, J. Petrasch, P. Wyss, A. Steinfeld, J. Heat Transfer 131, 072701 (2009)

    Article  Google Scholar 

  8. B. Rousseau, D. De Sousa Meneses, P. Echegut, M. Di Michiel, J.-F. Thovert, Appl. Opt. 46, 4266 (2007)

    Article  ADS  Google Scholar 

  9. J.I. Eldridge, C.M. Spuckler, J. Am. Ceram. Soc. 91, 1603 (2008)

    Article  Google Scholar 

  10. B.X. Wang, C.Y. Zhao, Int. J. Heat Mass Transfer 89, 920 (2015)

    Article  Google Scholar 

  11. J.R. Howell, R. Siegel, M.P. Mengüç, Thermal Radiation Heat Transfer, 5th edn. (CRC Press Inc., Boca Raton, 2010)

    Google Scholar 

  12. M.F. Modest, Radiative Heat Transfer, 3rd edn. (Academic Press, New York, 2013)

    Google Scholar 

  13. A.A. Maradudin (ed.), Light Scattering and Nanoscale Surface Roughness (Springer, New York, 2007)

    Google Scholar 

  14. Z.M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, New York, 2007)

    Google Scholar 

  15. H.J. Lee, Y.-B. Chen, Z.M. Zhang, Int. J. Heat Mass Transfer 49, 4482 (2006)

    Article  MathSciNet  Google Scholar 

  16. Q.Z. Zhu, H.J. Lee, Z.M. Zhang, Front. Energy Power Eng. China 3, 60 (2009)

    Article  Google Scholar 

  17. S.K. Andersson, C.G. Ribbing, Phys. Rev. B 49, 11336 (1994)

    Article  ADS  Google Scholar 

  18. C.A. Worrell, J. Mater. Sci. 21, 781 (1986)

    Article  ADS  Google Scholar 

  19. J.G.J. Peelen, R. Metselaar, J. Appl. Phys. 45, 216 (1974)

    Article  ADS  Google Scholar 

  20. J. Manara, R. Caps, F. Raether, J. Fricke, Opt. Commun. 168, 237 (1999)

    Article  ADS  Google Scholar 

  21. O. Rozenbaum, D. De Sousa Meneses, P. Echegut, Int. J. Thermophys. 30, 580 (2009)

    Article  ADS  Google Scholar 

  22. O. Rozenbaum, D. De Sousa Meneses, P. Echegut, P. Levitz, High Temp-High Press. 32, 61 (2000)

    Article  Google Scholar 

  23. F. Gervais, in Handbook of Optical Constants of Solids, vol. 2, ed. by E.D. Palik (Academic Press, San Diego, 1998), pp. 761–775

    Chapter  Google Scholar 

  24. W.J. Tropf, in Handbook of Optical Constants of Solids, vol. 3, ed. by E.D. Palik (Academic Press, San Diego, 1998), pp. 653–681

    Google Scholar 

  25. J. Ishii, A. Ono, Meas. Sci. Technol. 12, 2103 (2001)

    Article  ADS  Google Scholar 

  26. B. Rousseau, L. del Campo, J.-Y. Rolland, D. De Sousa Meneses, P. Echegut, in 14th International Heat Transfer Conference (American Society of Mechanical Engineers, 2010), pp. 933-938

  27. A. Krell, P. Blank, H. Ma, T. Hutzler, M.P. Bruggen, R. Apetz, J. Am. Ceram. Soc. 86, 12 (2003)

    Article  Google Scholar 

  28. R. Apetz, P. Van Bruggen, J. Am. Ceram. Soc. 86, 480 (2003)

    Article  Google Scholar 

  29. B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, Y. Kagawa, Acta Mater. 57, 1319 (2009)

    Article  Google Scholar 

  30. T. Chartier, E. Streicher, P. Boch, J. Eur. Ceram. Soc. 9, 231 (1992)

    Article  Google Scholar 

  31. M. Descamps, G. Moreau, M. Mascart, B. Thierry, J. Eur. Ceram. Soc. 13, 221 (1994)

    Article  Google Scholar 

  32. A. Collins, E. Lightowlers, P. Dean, Phys. Lett. 158, 833 (1967)

    Google Scholar 

  33. J. Tischler, J. Freitas, Appl. Phys. Lett. 85, 1943 (2004)

    Article  ADS  Google Scholar 

  34. W. Moore, J. Freitas Jr., R. Holm, O. Kovalenkov, V. Dmitriev, Appl. Phys. Lett. 86, 141912 (2005)

    Article  ADS  Google Scholar 

  35. D. Jones, R. French, H. MuÈllejans, S. Loughin, A. Dorneich, P. Carcia, J. Mater. Res. 14, 4337 (1999)

    Article  ADS  Google Scholar 

  36. S. Loughin, R.H. French, in Handbook of Optical Constants of Solids, vol. 3, ed. by E.D. Palik (Academic Press, San Diego, 1998), pp. 373–401

    Google Scholar 

  37. F.L. Riley, J. Am. Ceram. Soc. 83, 245 (2000)

    Article  Google Scholar 

  38. O. Yeheskel, Y. Gefen, M. Talianker, J. Mater. Sci. 19, 745 (1984)

    Article  ADS  Google Scholar 

  39. F. Habraken, A. Kuiper, Mater. Sci. Eng. R 12, 123 (1994)

    Article  Google Scholar 

  40. E. Taft, J. Electrochem. Soc. 118, 1341 (1971)

    Article  Google Scholar 

  41. S.V. Deshpande, E. Gulari, S.W. Brown, S.C. Rand, J. Appl. Phys. 77, 6534 (1995)

    Article  ADS  Google Scholar 

  42. H.R. Philipp, in Handbook of Optical Constants of Solids, vol. 1, ed. by E.D. Palik (Academic Press, San Diego, 1998), pp. 771–774

    Google Scholar 

  43. M. Klanjšek Gunde, M. Maček, Phys. Status Solidi A 183, 439 (2001)

    Article  ADS  Google Scholar 

  44. G. Cataldo, J.A. Beall, H.-M. Cho, B. McAndrew, M.D. Niemack, E.J. Wollack, Opt. Lett. 37, 4200 (2012)

    Article  ADS  Google Scholar 

  45. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Appl. Opt. 51, 6789 (2012)

    Article  ADS  Google Scholar 

  46. T. Nishimura, X. Xu, K. Kimoto, N. Hirosaki, H. Tanaka, Sci. Technol. Adv. Mater. 8, 635 (2007)

    Article  Google Scholar 

  47. Z. Zhang, M.F. Modest, J. Heat Transfer 120, 322 (1998)

    Article  Google Scholar 

  48. T. Flaherty, P.V. Kelly, S. Lynch, R.T. Cundill, M.O. Keeffe, G.M. Crean, in Advanced Materials’ 93: Ceramics, Powders, Corrosion and Advanced Processing, ed. by S. Somiya (Newnes, Tokyo, 1993), pp. 937–940

    Google Scholar 

  49. V.R. Weidner, J.J. Hsia, J. Opt. Soc. Am. 71, 856 (1981)

    Article  ADS  Google Scholar 

  50. H.J. Lee, A.C. Bryson, Z.M. Zhang, Int. J. Thermophys. 28, 918 (2007)

    Article  ADS  Google Scholar 

  51. D.W. Lynch, in Handbook of Optical Constants of Solids, vol. 1, ed. by E.D. Palik (Academic Press, San Diego, 1998), pp. 275–368

    Google Scholar 

  52. L.P. Wang, B.J. Lee, X.J. Wang, Z.M. Zhang, Int. J. Heat Mass Transfer 52, 3024 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This study was mainly supported by the US National Science Foundation (CBET-1235975). Q. Cheng would also like to thank the China Scholarship Council and the Foundation of State Key Laboratory of Coal Combustion (FSKLCCB1601) for the sponsorship. The facilities at the Georgia Tech Institute for Electronics and Nanotechnology (IEN) were used for the characterization of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuomin Zhang.

Additional information

Selected Papers of the 19th Symposium on Thermophysical Properties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Q., Yang, P. & Zhang, Z. Radiative Properties of Ceramic \(\hbox {Al}_{2}\hbox {O}_{3}\), AlN, and \(\hbox {Si}_{3}\hbox {N}_{4}\): I. Experiments. Int J Thermophys 37, 62 (2016). https://doi.org/10.1007/s10765-016-2067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2067-8

Keywords

Navigation