Skip to main content

Advertisement

Log in

Latent Heat Thermal Energy Storage: Effect of Metallic Mesh Size on Storage Time and Capacity

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Use of metallic meshes in latent heat thermal storage system shortens the charging time (total melting of the phase change material), which is favorable in practical applications. In the present study, effect of metallic mesh size on the thermal characteristics of latent heat thermal storage system is investigated. Charging time is predicted for various mesh sizes, and the influence of the amount of mesh material on the charging capacity is examined. An experiment is carried out to validate the numerical predictions. It is found that predictions of the thermal characteristics of phase change material with presence of metallic meshes agree well with the experimental data. High conductivity of the metal meshes enables to transfer heat from the edges of the thermal system towards the phase change material while forming a conduction tree in the system. Increasing number of meshes in the thermal system reduces the charging time significantly due to increased rate of conduction heat transfer in the thermal storage system; however, increasing number of meshes lowers the latent heat storage capacity of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Duan, G.F. Naterer, Heat transfer in phase change materials for thermal management of electric vehicle battery modules. Int. J. Heat Mass Transf. 53, 5176–5182 (2010)

    Article  Google Scholar 

  2. K.S. Reddy, Thermal modeling of pcm-based solar integrated collector storage water heating system. ASME J. Sol. Energy Eng. 129(4), 458–464 (2007)

    Article  Google Scholar 

  3. Q. He, W. Zhang, A study on latent heat storage exchangers with the high-temperature phase-change material. Int. J. Energy Res. 25(4), 331–341 (2001)

    Article  Google Scholar 

  4. M.H. Sheikh, M.A.R. Sharif, P.A. Rupar, Chemical methods for the separation of copper oxide nanoparticles from colloidal suspension in dodecane. J. Nanotechnol. Eng. Med. 5(2), 021007–0210015 (2014)

    Article  Google Scholar 

  5. P.V.S.S. Srivatsaa, R. Babya, C. Balajia, Numerical investigation of PCM based heat sinks with embedded metal foam/crossed plate fins. Numer. Heat Transf. Part A 66(10), 1131–1153 (2014)

    Article  ADS  Google Scholar 

  6. K. Fumoto, N. Sato, M. Kawaji, T. Kawanami, T. Inamura, Phase change characteristics of a nano-emulsion as a latent heat storage material. Int. J. Thermophys. 35, 1–11 (2013)

    Google Scholar 

  7. P. Losada-Perez, C.S.P. Tripathi, J. Leys, G. Cordoyiannis, C. Glorieux, J. Thoen, Measurements of heat capacity and enthalpy of phase change materials by adiabatic scanning calorimetry. Int. J. Thermophys. 32(5), 913–924 (2011)

    Article  ADS  Google Scholar 

  8. A.-H. Wang, X.-G. Liang, J.-X. Ren, Constructal enhancement of heat conduction with phase change. Int. J. Thermophys. 27(1), 126–138 (2006)

    Article  ADS  MATH  Google Scholar 

  9. Z. Zhang, G. Shi, S. Wang, X. Fang, X. Liu, Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material. Renew. Energy 50, 670–675 (2013)

    Article  Google Scholar 

  10. X. Qiu, W. Li, G. Song, X. Chu, G. Tang, Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage. Energy 46(1), 188–199 (2012)

    Article  Google Scholar 

  11. Z. Chen, F. Shan, L. Cao, G. Fang, Preparation and thermal properties of n-octadecane/molecular sieve composites as form-stable thermal energy storage materials for buildings. Energy Build. 49, 423–428 (2012)

    Article  Google Scholar 

  12. N. Javani, I. Dincer, G.F. Naterer, G.L. Rohrauer, Modeling of passive thermal management for electric vehicle battery packs with PCM between cells. Appl. Therm. Eng. 73(1), 305–314 (2014)

    Article  Google Scholar 

  13. M.Z.M. Rizan, F.L. Tan, C.P. Tso, An experimental study of n-octadecane melting inside a sphere subjected to constant heat rate at surface. Int. Commun. Heat Mass Transf. 39(10), 1624–1630 (2012)

    Article  Google Scholar 

  14. K. Tumirah, M.Z. Hussein, Z. Zulkarnain, R. Rafeadah, Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage. Energy 66, 881–890 (2014)

    Article  Google Scholar 

  15. N.S. Dhaidan, J.M. Khodadadi, T.A. Al-Hattab, S.M. Al-Mashat, Experimental and numerical study of constrained melting of n-octadecane with CuO nanoparticle dispersions in a horizontal cylindrical capsule subjected to a constant heat flux. Int. J. Heat Mass Transf. 67, 523–534 (2013)

    Article  Google Scholar 

  16. N. Javani, I. Dincer, G.F. Naterer, B.S. Yilbas, Exergy analysis and optimization of a thermal management system with phase change material for hybrid electric vehicles. Appl. Therm. Eng. 64(1–2), 471–482 (2014)

    Article  Google Scholar 

  17. W.-L. Cheng, N. Liu, W.-F. Wu, Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity. Appl. Therm. Eng. 36, 345–352 (2012)

    Article  ADS  Google Scholar 

  18. C.J. Ho, C.-R. Siao, W.-M. Yan, Thermal energy storage characteristics in an enclosure packed with MEPCM particles: an experimental and numerical study. Int. J. Heat Mass Transf. 73, 88–96 (2014)

    Article  Google Scholar 

  19. K. Chen, X. Yu, C. Tian, J. Wang, Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage. Energy Convers. Manag. 77, 13–21 (2014)

    Article  Google Scholar 

  20. E.M. Languri, C.O. Aigbotsua, J.L. Alvarado, Latent thermal energy storage system using phase change material in corrugated enclosures. Appl. Therm. Eng. 50(1), 1008–1014 (2013)

    Article  Google Scholar 

  21. J. Shi, Z. Chen, S. Shao, J. Zheng, Experimental and numerical study on effective thermal conductivity of novel form-stable basalt fiber composite concrete with PCMs for thermal storage. Appl. Therm. Eng. 66(1–2), 156–161 (2014)

    Article  Google Scholar 

  22. C. Alkan, A. Sar, A. Karaipekli, Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Convers. Manag. 52(1), 687–692 (2011)

    Article  Google Scholar 

  23. S. Mahmoud, A. Tang, C. Toh, R. AL-Dadah, S.L. Soo, Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks original. Appl. Energy 112, 1349–1356 (2013)

    Article  Google Scholar 

  24. A.E. Bergles, Heat transfer augmentation, in Two-Phase Flow Heat Exchangers, NATO ASI Series, vol 143 (1988), pp. 343–373

  25. American Society of Heating, Refrigerating and Air Conditioning Engineers, ASHRAE, Handbook of Fundamentals (ASHRAE, New York, 2001)

  26. F.P. Incorpera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer, 6th edn. (Wiley, Hoboken, 2007)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funded project RG 1204 via support of Thermoelectric Group formed by the Deanship of Scientific Research at King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Yilbas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuja, S.Z., Yilbas, B.S. Latent Heat Thermal Energy Storage: Effect of Metallic Mesh Size on Storage Time and Capacity. Int J Thermophys 36, 2985–3000 (2015). https://doi.org/10.1007/s10765-015-1953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1953-9

Keywords

Navigation