Skip to main content
Log in

Analysis of Gas Molecule Mean Free Path and Gaseous Thermal Conductivity in Confined Nanoporous Structures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This study comprehensively analyzes the mean free path of gas molecules and gaseous thermal conductivity in confined nanoporous structures through a wide range of temperatures and pressures. A simplified unit cell cubic array structure of nanospheres is used to correlate microstructure features with specific surface area and density of nanoporous materials. Zeng’s model is used to describe the mean free path of the gas molecules and the gaseous thermal conductivity in confined nanoporous structures, and experimental gaseous thermal conductivity data from the literature is used to validate the model. The results show that a material’s nanoporous structure features are directly related to specific surface area and density. The mean free path of gas molecules in a confined nanoporous structure decreases with increasing specific surface area and density. Thus, nanoporous materials with a relatively high specific surface area and a higher density are more favorable for confining gaseous thermal conductivity in nanopores. This work shows that \(p=10^{4}\hbox { Pa}\) and \(10^{6}\hbox { Pa}\) are two characteristic pressures at ambient temperatures for the investigated silica aerogel materials. When \(p<10^{4}\hbox { Pa}\), the mean free path of the gas molecules remains constant with varying pressure, while gaseous thermal conductivity approaches zero due to the restrictive effect of the nanoporous structure and the diluted gas molecules. When \(\hbox {p}>10^{6}\hbox { Pa}\), the limiting effect of the nanoporous structure on the movement of gas molecules can be ignored, and so the mean free path of gas molecules in the nanoporous material approaches the mean free path of gas molecules in free space, while the gaseous thermal conductivity approaches the gaseous thermal conductivity in free space. As temperature increases, there exists a maximum value for gaseous thermal conductivity in confined nanoporous materials, but this maximum increases as pressure increases. The maximum gaseous thermal conductivity for the material is also determined in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.S. Douglas, M. Alok, B. Ulrich, J. Non-Cryst. Solids 225, 254–259 (1998)

    Article  Google Scholar 

  2. J. Frick, T. Tillotson, Thin Solid Films 297, 212–223 (1997)

    Article  ADS  Google Scholar 

  3. E.R. Bardy, J.C. Mollendorf, D.R. Pendergast, ASME J. Heat Transf. 129, 232–235 (2007)

    Article  Google Scholar 

  4. S.Q. Zeng, A. Hunt, R. Greif, J. Non-Cryst. Solids 186, 264–270 (1995)

    Article  ADS  Google Scholar 

  5. K. Raed, U. Gross, Int. J. Thermophys. 30, 1343–1356 (2009)

    Article  Google Scholar 

  6. G. Lu, X.D. Wang, Y.Y. Duan, X.W. Li, J. Non-Cryst. Solids 357, 3822–3829 (2011)

    Article  ADS  Google Scholar 

  7. X. Lu, M.C. Ardunini-Schuster, J. Kuhn, O. Nilsson, J. Fricke, R.W. Pekala, Science 225, 971–972 (1992)

    Article  ADS  Google Scholar 

  8. S. Spagnol, B. Lartigue, A. Trombe, F. Despetis, ASME J. Heat Transf. 131, 074501–074504 (2009)

    Article  Google Scholar 

  9. L.W. Hrubesh, R.W. Pekala, J. Mater. Res. 9, 731–738 (1994)

    Article  ADS  Google Scholar 

  10. P.J. Burns, C.L. Tien, Int. J. Heat Mass Transf. 22, 929–939 (1979)

    Article  ADS  Google Scholar 

  11. O.J. Lee, K.H. Lee, J.Y. Tae, J.K. Sun, K.P. Yoo, J. Non-Cryst. Solids 298, 287–292 (2002)

    Article  ADS  Google Scholar 

  12. X. Lu, R. Caps, J. Fricke, C.T. Alviso, R.W. Pekala, J. Non-Cryst. Solids 188, 226–234 (1995)

    Article  ADS  Google Scholar 

  13. S.Q. Zeng, A.J. Hunt, W. Cao, ASME J. Heat Transf. 116, 756–759 (1994)

    Article  Google Scholar 

  14. G.S. Wei, Y.S. Liu, X.Z. Du, X.X. Zhang, ASME J. Heat Transf. 134, 041301–041306 (2012)

    Article  Google Scholar 

  15. G.S. Wei, X.X. Zhang, F. Yu, J. Univ. Sci. Technol. Beijing 30, 781–785 (2008)

    Google Scholar 

  16. Y.Y. Duan, J. Lin, X.D. Wang, J.J. Zhao, CIESC J. 63, 54–58 (2012)

    Google Scholar 

  17. S.Q. Zeng, A. Hunt, ASME J. Heat Transf. 117, 758–761 (1995)

    Article  Google Scholar 

  18. H.J. Wu, Y.D. Liao, Y.F. Ding, H. Wang, C. Peng, Heat Transf. Eng. 35, 1061–1070 (2014)

    Article  ADS  Google Scholar 

  19. J.J. Zhao, Y.Y. Duan, X.D. Wang, B.X. Wang, J. Nanopart. Res. 14, 1024–1039 (2012)

    Article  Google Scholar 

  20. G. Lu, X.D. Wang, Y.Y. Duan, Aerosp. Mater. Technol. 1, 1–6 (2011)

    Google Scholar 

  21. G. Lu, Y.Y. Duan, X.D. Wang, Aerosp. Mater. Technol. 1, 29–33 (2011)

    MATH  Google Scholar 

  22. J.-J. Zhao, PhD Thesis, Tsinghua University, Beijing, 2012

  23. G. Reichenauer, U. Heinemann, H.P. Ebert, Colloids Surf. A 300, 204–210 (2007)

    Article  Google Scholar 

  24. K. Swimm, G. Reichenauer, S. Vidi, H.P. Ebert, Int. J. Thermophys. 30, 1329–1342 (2009)

    Article  Google Scholar 

  25. C. Bi, G.H. Tang, W.Q. Tao, J. Non-Cryst. Solids 358, 3124–3128 (2012)

    Article  ADS  Google Scholar 

  26. C. Li, L.Y. Zhang, S.W. Qian, Thermal Science, 2nd edn. (High Education Press, Beijing, 2008), pp. 91–101

    Google Scholar 

  27. S.Q. Zeng, A. Hunt, R. Greif, ASME J. Heat Transf. 117, 1055–1058 (1995)

    Article  Google Scholar 

  28. G.S. Wei, X.X. Zhang, F. Yu, J. Therm. Sci. Technol. 4, 107–112 (2005)

    Google Scholar 

  29. G.S. Wei, Y.S. Liu, X.X. Zhang, F. Yu, X.Z. Du, Int. J. Heat Mass Transf. 54, 2355–2366 (2011)

    Article  MATH  Google Scholar 

  30. J.J. Zhao, Y.Y. Duan, X.D. Wang, B.X. Wang, J. Non-Cryst. Solids 358, 1303–1312 (2012)

    Article  Google Scholar 

  31. J.H. Gong, J. Hefei Univ. Technol. 18, 143–147 (1995)

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Nos. 51376060 and 51406052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaosheng Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, G., Wang, L., Chen, L. et al. Analysis of Gas Molecule Mean Free Path and Gaseous Thermal Conductivity in Confined Nanoporous Structures. Int J Thermophys 36, 2953–2966 (2015). https://doi.org/10.1007/s10765-015-1942-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1942-z

Keywords

Navigation