Skip to main content
Log in

A System for High-Temperature Homogeneity Scanning of Noble-Metal Thermocouples

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Noble-metal thermocouples are amongst the most widely used thermocouples for high-temperature process measurement and as references. Although they are less susceptible to inhomogeneity effects than the more-common base-metal thermocouples, inhomogeneity is still the major source of uncertainty. Currently, most estimates of the uncertainty due to inhomogeneity are based on thermocouple specifications or historical performance of similar thermocouples. It is not common for the inhomogeneity to be measured directly, in part because there is no accepted method for measuring the inhomogeneities, and in part because there is no conclusive evidence linking the magnitude of inhomogeneities determined at the scanning temperature to the effects of the same inhomogeneities at other temperatures. This paper describes an inhomogeneity scanner able to be fitted to sodium heat-pipe furnaces to operate between \(600 {\,{}^{\circ }}\hbox {C}\) and \(1000 {\,{}^{\circ }}\hbox {C}\). Comparison of scans made at \(100 {\,{}^{\circ }}\hbox {C}\) demonstrates the scalability of some types of inhomogeneity in Type S and R thermocouples. It is concluded that for Type R and S thermocouples, a robust uncertainty assessment can be obtained from a scan made at a single temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.P. White, Phys. Rev. (Ser. I) 23, 449–474 (1906)

    Article  ADS  Google Scholar 

  2. J.V. Pearce, Meas. Sci. Technol. 18, 3489–3495 (2007)

    Article  ADS  Google Scholar 

  3. M. Ballico, F. Jahan, in Temperature, Its Measurement and Control in Science and Industry, Part 1, vol. 8, ed. by C.W. Meyer (AIP, New York, 2013), pp. 544–548

  4. E.S. Webster, D.R. White, Metrologia 52, 130–144 (2015)

    Article  ADS  Google Scholar 

  5. F. Jahan, M. Ballico, in Temperature, Its Measurement and Control in Science and Industry, Part 1, vol. 7, ed. by D.C. Ripple (AIP, New York, 2002), pp. 523–528

  6. Y.G. Kim, C.H. Song, K.S. Gam, I. Yang, Meas. Sci. Technol. 20, 1–5 (2009)

    Google Scholar 

  7. E.H. McLaren, E.G. Murdock, The Properties of Pt/PtRh Thermocouples for Thermometry in the Range 0–\(1100 {\,{}^{\circ }}\text{ C }\), Part 3, NRCC 17409 edn. (National Research Council Canada, 1983)

  8. E.S. Webster, Int. J. Thermophys. (2015) (in press)

  9. F. Jahan, M. Ballico, Int. J. Thermophys. 31, 1544–1553 (2010)

    Article  ADS  Google Scholar 

  10. R.E. Bentley, Theory and Practice of Thermoelectric Thermometry, 1st edn. (Springer, Singapore, 1998)

    Google Scholar 

  11. I. Jursic, S. Rudtsch, Int. J. Thermophys. 35, 1055–1066 (2014)

    Article  ADS  Google Scholar 

  12. R.E. Bentley, Aust. J. Instrum. Control 4, 4–9 (1989)

    Google Scholar 

  13. M. Gotoh, in Temperature, Its Measurement and Control in Science and Industry, Part 1, vol. 7, ed. by D.C. Ripple, (AIP, New York, 2002), pp. 481–484

  14. E.S. Webster, D.R. White, H. Edgar, Int. J. Thermophys. 36, 444–466 (2014)

    Article  ADS  Google Scholar 

  15. E.S. Webster, Int. J. Thermophys. 35, 574–595 (2014)

    Article  ADS  Google Scholar 

  16. T.G. Kollie, J.L. Horton, K.R. Carr, M.B. Herskovitz, C.A. Mossman, Rev. Sci. Instrum. 46, 1447–1461 (1975)

    Article  ADS  Google Scholar 

  17. A.W. Fenton, in Temperature, Its Measurement and Control in Science and Industry, Part 3, vol. 4, ed. by H.H. Plumb (Instrument Society of America, Pittsburgh, 1972), pp. 1973–1990

  18. N.A. Burley, R.M. Hess, C.F. Howie, J.A. Coleman, in Temperature, Its Measurement and Control in Science and Industry, Part 2, vol. 5, ed. by J.F. Schooley (Instrument Society of America, Pittsburgh, 1982), pp. 1159–1166

  19. D.D. Pollock, Thermocouples Theory and Properties (CRC Press, Boca Raton, 1991)

    Google Scholar 

  20. G. Machin, K. Anhalt, F. Edler, J. Pearce, M. Sadli, R. Strnad, E. Vuelban, in 16th International Congress of Metrology (EDP Sciences, 2013)

  21. R.E. Bentley, Measurement 23, 35–46 (1998)

    Article  Google Scholar 

  22. K.D. Hill, Metrologia 31, 51–58 (2002)

    Article  ADS  Google Scholar 

  23. Y.G. Kim, K.S. Gam, J.H. Lee, Meas. Sci. Technol. 8, 317–321 (1997)

    Article  ADS  Google Scholar 

  24. R.E. Bentley, Meas. Sci. Technol. 12, 1250–1260 (2001)

    Article  ADS  Google Scholar 

  25. O. Ongrai, J. Pearce, G. Machin, S. Sweeney, Int. J. Thermophys. 31, 1506–1516 (2010)

    Article  ADS  Google Scholar 

  26. J. Tamba, K. Yamazawa, S. Masuyama, H. Ogura, M. Izuchi, Int. J. Thermophys. 32, 2436–2451 (2011)

    Article  ADS  Google Scholar 

  27. G. W. Burns, M. G. Scroger, G. F. Strouse, M. C. Croarkin, W. F. Guthrie, in Temperature-Electromotive Force Reference Functions and Tables for the Letter-Designated Thermocouple Types Based on the ITS-90 (NIST, 1993)

  28. R.E. Bentley, Meas. Sci. Technol. 11, 538–546 (2000)

    Article  ADS  Google Scholar 

  29. P. Kinzie, Thermocouple Temperature Measurements, 1st edn. (Wiley, New York, 1973)

    Google Scholar 

  30. F. Edler, P. Ederer, in Temperature, Its Measurement and Control in Science and Industry, Part 1, vol. 8, ed. by C.W. Meyer, (AIP, New York, 2013), pp. 532–537

  31. M. Rubel, Mater. Sci. Eng. 9–12 (1987)

  32. J.C. Chaston, Platin. Met. Rev. 9, 51–56 (1965)

    Google Scholar 

  33. J.C. Chaston, Platin. Met. Rev. 19, 135–140 (1975)

    Google Scholar 

  34. T. Li, E.A. Marquis, P.A.J. Bagot, S.C. Tsang, G.D.W. Smith, Catal. Today 175, 552–557 (2011)

    Article  Google Scholar 

  35. J.C. Chaston, Platin. Met. Rev. 8, 50–54 (1964)

    Google Scholar 

  36. J.C. Chaston, Platin. Met. Rev. 10, 91–93 (1966)

    Google Scholar 

  37. R.E. Bentley, Int. J. Thermophys. 6, 83–99 (1985)

    Article  ADS  Google Scholar 

  38. F. Edler, A.C. Baratto, Metrologia 42, 201–207 (2005)

    Article  ADS  Google Scholar 

  39. J.V. Pearce, H. Ogura, M. Izuchi, G. Machin, Metrologia 46, 743–749 (2009)

    Article  Google Scholar 

  40. Y. Kim, I. Yang, K. Gam, Instrum. Sci. Technol. 36, 257–266 (2008)

    Article  Google Scholar 

  41. E.H. McLaren, E.G. Murdock, Temperature, Its Measurement and Control in Science and Industry, Part 3, vol. 4, ed. by H.H. Plumb (Instrument Society of America, Pittsburgh, 1972), pp. 1543–1560

  42. E.H. McLaren, E.G. Murdock, Temperature, Its Measurement and Control in Science and Industry, Part 2, vol. 5, ed. by J.F. Schooley (Instrument Society of America, Pittsburgh, 1982), pp. 953–975

  43. R.E. Bentley, Meas. Sci. Technol. 12, 627–634 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author wishes to acknowledge the financial assistance and resources provided by NPL in completing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Webster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webster, E., Mason, R., Greenen, A. et al. A System for High-Temperature Homogeneity Scanning of Noble-Metal Thermocouples. Int J Thermophys 36, 2922–2939 (2015). https://doi.org/10.1007/s10765-015-1939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1939-7

Keywords

Navigation