Skip to main content
Log in

Thermodynamic Properties of Copper in a Wide Range of Pressure and Temperature Within the Quasi-Harmonic Approximation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A first-principles calculations have been performed based on density functional theory to study the thermal properties of copper. Calculations have been performed using the pseudo-potential method within the generalized gradient approximation (GGA) and local density approximation. Thermodynamic properties including the bulk modulus, thermal expansion coefficient, and heat capacities at constant volume and constant pressure were calculated as a function of pressure and temperature using three different models based on the quasi-harmonic approximation: the Debye–Slater model, the Debye–Grüneisen model, and the full quasi-harmonic model (that requires the phonon density of states at each calculated volume). Also, empirical energy corrections are applied to the results of the three models. The electronic contributions to the specific heat are calculated and discussed, and it was found that they become important at high temperatures. The calculated values are in good agreement with experimental results. It is found that the full quasi-harmonic model with the GGA approximation provides more accurate estimates in comparison with the other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.K. Kirby, T.A. Hahn, in NBS Certificate Standard Reference Material 736, Copper—Thermal Expansion (National Bureau of Standards, Gaithersburg, Washington, DC 1969)

  2. T.A. Hahn, J. Appl. Phys. 41, 5096 (1970)

    Article  ADS  Google Scholar 

  3. S.J. Bennett, J. Phys. D 11, 777 (1978)

    Article  ADS  Google Scholar 

  4. J.L. Verhaeghe, G.G. Robbrecht, E. Van Outryve, J. Phys. 23, 109 (1962)

    Google Scholar 

  5. A.F. Pojur, B. Yates, J. Phys. E 6, 63 (1973)

    Article  ADS  Google Scholar 

  6. R.O. Simmons, R.W. Balluffi, Phys. Rev. 129, 1533 (1963)

    Article  ADS  Google Scholar 

  7. F.C. Nix, D. MacNair, Phys. Rev. 60, 597 (1941)

    Article  ADS  Google Scholar 

  8. O. Prakash, A. Rao, P.N. Dheer, Pramana 39, 655 (1992)

    Article  ADS  Google Scholar 

  9. D. Bijl, H. Pullan, Physica 21, 285 (1955)

    Article  ADS  Google Scholar 

  10. R.F. Cooper, B. Yates, Cryogenics 10, 442 (1970)

    Article  ADS  Google Scholar 

  11. T. Rubin, H.W. Altman, H.L. Johnston, J. Am. Chem. Soc. 76, 5289 (1954)

    Article  Google Scholar 

  12. G.V. Bunton, S. Weintroub, Cryogenics 8, 354 (1968)

    Article  ADS  Google Scholar 

  13. G.K. White, J.G. Collins, J. Low Temp. Phys. 7, 43 (1972)

    Article  ADS  Google Scholar 

  14. K.O. McLean, C.A. Swenson, C.R. Case, J. Low Temp. Phys. 7, 76 (1972)

    Article  ADS  Google Scholar 

  15. F.N.D.D. Perierat, G.M. Graham, J. Low Temp. Phys. 9, 203 (1972)

    Article  ADS  Google Scholar 

  16. W.C. Overton, J. Gaffney, Phys. Rev. 98, 969 (1955)

    Article  ADS  Google Scholar 

  17. G.K. White, S.J. Collocott, J. Phys. Chem. Ref. Data 13, 1251 (1984)

    Article  ADS  Google Scholar 

  18. D.L. Martin, Can. J. Phys. 38, 17 (1960)

    Article  ADS  Google Scholar 

  19. R.A. Robie, B.S. Hemingway, W.H. Wilson, J. Res. US Geol. Surv. 4, 631 (1976)

  20. F. Jona, P.M. Marcus, Phys. Rev. B 63, 094113 (2001)

    Article  ADS  Google Scholar 

  21. F. Jona, X.Z. Ji, P.M. Marcus, Phys. Rev. B 68, 172101 (2003)

    Article  ADS  Google Scholar 

  22. C. Bercegeay, S. Bernard, Phys. Rev. B 72, 214101 (2005)

    Article  ADS  Google Scholar 

  23. Z. Tang, M. Hasegawa, Y. Nagai, M. Saito, Phys. Rev. B 65, 195108 (2002)

    Article  ADS  Google Scholar 

  24. Y.B. Liu, X.S. Li, Y.L. Feng, Y.L. Cui, X. Han, Physica B 394, 14 (2007)

    Article  ADS  Google Scholar 

  25. J.C. Slater, Introduction to Chemical Physics (McGraw-Hill, New York, 1939)

    Google Scholar 

  26. V.L. Moruzzi, J.F. Janak, K. Schwarz, Phys. Rev. B 37, 790 (1988)

    Article  ADS  Google Scholar 

  27. A. Otero-de-la-Roza, D. Abbasi-P’erez, V. Lauña, Comput. Phys. Commun. 182, 2232 (2011)

    Article  MATH  ADS  Google Scholar 

  28. Y. Lu, P. Zhang, Comput. Mater. Sci. 82, 5 (2014)

    Article  Google Scholar 

  29. X. Zhang, C. Ying, S. Quan, G. Shi, Z. Li, Comput. Mater. Sci. 58, 12 (2012)

    Article  Google Scholar 

  30. P. Carrier, R. Wentzcovitch, J. Tsuchiya, Phys. Rev. B 76, 064116 (2007)

    Article  ADS  Google Scholar 

  31. S. Laref, A. Laref, Comput. Mater. Sci. 51, 135 (2012)

    Article  Google Scholar 

  32. A. Togo, L. Chaput, I. Tanaka, G. Hug, Phys. Rev. B 81, 174301 (2010)

    Article  ADS  Google Scholar 

  33. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  34. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  35. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter. 21, 395502 (2009)

    Article  Google Scholar 

  36. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  37. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  38. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  39. M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989)

    Article  ADS  Google Scholar 

  40. A. Abdollahi, Physica B 410, 57 (2013)

    Article  ADS  Google Scholar 

  41. Y. Wang, Z.K. Liu, L.Q. Chen, Acta Mater. 52, 2665 (2004)

    Article  MathSciNet  Google Scholar 

  42. F. Birch, Phys. Rev. 71, 809 (1947)

    Article  MATH  ADS  Google Scholar 

  43. Z. Guo, C.S.S.R. Kumar, L.L. Henry, E.E. Doomes, J. Hormes, E.J. Podlaha, J. Electrochem. Soc. 152, D1 (2005)

    Article  Google Scholar 

  44. C. Kittel, Introduction to Solid State Physics, 5th edn. (Wiley, New York, 1976)

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledgement Dr. M.A. Blanco and his co-workers for their GIBBS code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haleh Kangarlou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kangarlou, H., Abdollahi, A. Thermodynamic Properties of Copper in a Wide Range of Pressure and Temperature Within the Quasi-Harmonic Approximation. Int J Thermophys 35, 1501–1511 (2014). https://doi.org/10.1007/s10765-014-1742-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1742-x

Keywords

Navigation