Skip to main content
Log in

Progress Toward Development of Low-Temperature Microwave Refractive Index Gas Thermometry at NRC

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Progress toward the development of a low-temperature microwave refractive index gas thermometry implementation for primary thermometry at NRC is reported. A prototype quasi-spherical copper resonator has been integrated into a cryogenic system with a 5 K base temperature, and preliminary microwave measurements in vacuum have been completed to characterize the resonator between 5 K and 297 K. The dependence of experimental results on spectral fitting background terms, 1st- and 2nd-order shape corrections, and waveguide corrections has also been explored. The current NRC results agree with previous room-temperature measurements on the same resonator at NIST, and indicate no significant change in resonator shape between room temperature and low temperature. The temperature dependences of the resonator electrical conductivity and linear thermal expansion coefficient, as obtained from the microwave resonances, agree with published literature values for oxygen-free high-conductivity copper measured using other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Preston-Thomas, Metrologia 27, 3 (1990). doi:10.1088/0026-1394/27/1/002

    Article  ADS  Google Scholar 

  2. H. Preston-Thomas, Metrologia 27, 107 (1990). doi:10.1088/0026-1394/27/2/010

    Article  ADS  Google Scholar 

  3. J. Fischer, M. de Podesta, K.D. Hill, M. Moldover, L. Pitre, R. Rusby, P. Steur, O. Tamura, R. White, L. Wolber, Int. J. Thermophys. 32, 12 (2011). doi:10.1007/s10765-011-0922-1

    Article  ADS  Google Scholar 

  4. C. Gaiser, B. Fellmuth, N. Haft, Int. J. Thermophys. 31, 1428 (2010). doi:10.1007/s10765-010-0802-0

    Article  ADS  Google Scholar 

  5. L. Pitre, M.R. Moldover, W.L. Tew, Metrologia 43, 142 (2006). doi:10.1088/0026-1394/43/1/020

    Article  ADS  Google Scholar 

  6. A.R. Colclough, Metrologia 10, 73 (1974). doi:10.1088/0026-1394/10/2/006

    Article  ADS  Google Scholar 

  7. R.L. Rusby, Inst. Phys. Conf. Ser. Eur. Conf. Temp. Meas. 26, 44 (1975)

    Google Scholar 

  8. E.F. May, L. Pitre, J.B. Mehl, M.R. Moldover, J.W. Schmidt, Rev. Sci. Instrum. 75, 3307 (2004). doi:10.1063/1.1791831

    Article  ADS  Google Scholar 

  9. J.W. Schmidt, R.M. Gavioso, E.F. May, M.R. Moldover, Phys. Rev. Lett. 98, 254504 (2007). doi:10.1103/PhysRevLett.98.254504

  10. J.B. Mehl, Metrologia 46, 554 (2009). doi:10.1088/0026-1394/46/5/020

    Article  ADS  Google Scholar 

  11. R.J. Underwood, J.B. Mehl, L. Pitre, G. Edwards, G. Sutton, M. de Podesta, Meas. Sci. Technol. 21, 075103 (2010). doi:10.1088/0957-0233/21/7/075103

    Article  ADS  Google Scholar 

  12. L. Pitre, F. Sparasci, D. Truong, A. Guillou, L. Risegari, M.E. Himbert, Int. J. Thermophys. 32, 1825 (2011). doi:10.1007/s10765-011-1023-x

    Article  ADS  Google Scholar 

  13. G. Edwards, R.J. Underwood, Metrologia 48, 114 (2011). doi:10.1088/0026-1394/48/3/005

    Article  ADS  Google Scholar 

  14. N.J Simon, E.S. Drexler, R.P. Reed, NIST Monograph 177 (1992)

  15. J.G. Hust, A.B. Lankford, National Bureau of Standards Internal Report NBSIR 84-3007 (1984)

  16. B. Podobedov, Phys. Rev. ST Accel. Beams 12, 044401 (2009). doi:10.1103/PhysRevSTAB.12.044401

    Article  ADS  Google Scholar 

  17. NIST Cryogenic Materials Properties Database, OFHC Copper (UNS C10100/C10200) entry, revised 02/03/2010, http://cryogenics.nist.gov/MPropsMAY/OFHC%20Copper/OFHC_Copper_rev1.htm (2010)

Download references

Acknowledgments

The authors would like to thank the National Institute of Standards and Technology (NIST) for the loan of the copper resonator used in this study; Robin Underwood and Eric May for sharing their computer codes for network analyzer interfacing and LM fitting; and Mike Moldover, Jim Mehl, and Jim Schmidt for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. C. Rourke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rourke, P.M.C., Hill, K.D. Progress Toward Development of Low-Temperature Microwave Refractive Index Gas Thermometry at NRC. Int J Thermophys 36, 205–228 (2015). https://doi.org/10.1007/s10765-014-1728-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1728-8

Keywords

Navigation