Skip to main content

Advertisement

Log in

Thermal Stability of \(\beta \)-PtO\(_2\) Investigated by Simultaneous Thermal Analysis and Its Influence on Platinum Resistance Thermometry

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We present thermogravimetric and differential scanning calorimetric studies of PtO\(_2\) powders measured in different atmospheres. In synthetic air a mass loss of 11.4 % is found at the decomposition temperature \(T_\mathrm {D}\) = 595 \(^{\circ }\hbox {C}\) which can be attributed to the reduction of PtO\(_2\). In a helium atmosphere the mass loss is 12.0 % and is found at 490 \(^{\circ }\hbox {C}\). Subsequent heating in air leads to another oxidation process above \(T_\mathrm {D}\) and a reduction at 800 \(^{\circ }\hbox {C}\). The second oxidation and reduction process is strongly suppressed when the powder is heated in He. The remaining mass above \(T_\mathrm {D}\) does not comply with a reduction path PtO\(_2 \rightarrow \) PtO \(\rightarrow \) Pt. Differential scanning calorimetry shows an endothermic reaction at \(T_\mathrm {D}\) in synthetic air as well as in helium which corresponds with the mass loss. These measurements imply that the powder can be assigned to be \(\beta \)-PtO\(_2\). Furthermore, catalytic activity of the PtO\(_2\) powder is evidenced by mass spectrometry to be present below 460 \(^{\circ }\hbox {C}\). Finally, the impact of these findings on the stability of platinum resistance thermometers is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Identification of commercial equipment and materials in this paper does not imply recommendation or endorsement by PTB, nor does it imply that the equipment and materials identified are necessarily the best available for this purpose.

References

  1. H. Preston-Thomas, Metrologia 27, 3 (1990)

    Article  ADS  Google Scholar 

  2. R.J. Berry, Metrologia 16, 117 (1980)

    Article  ADS  Google Scholar 

  3. R.J. Berry, Surf. Sci 76, 415 (1978)

    Article  ADS  Google Scholar 

  4. H. Sakurai, T. Yamaguchi, N. Hiura, K. Yoneshita, H. Kimura, O. Tamura, Jpn. J. Appl. Phys. 47, 8071 (2008)

    Article  ADS  Google Scholar 

  5. H. Sakurai, O. Tamura, Jpn. J. Appl. Phys. 50, 036601 (2011)

    Article  ADS  Google Scholar 

  6. N. Seriani, W. Pompe, L.C. Ciacchi, J. Phys. Chem. B. 110, 14860 (2006)

    Article  Google Scholar 

  7. N. Seriani, Z. Jin, W. Pompe, L.C. Ciacchi, Phys. Rev. B. 76, 155421 (2007)

    Article  ADS  Google Scholar 

  8. L. Maya, L. Riester, T. Thundat, C.S. Yust, J. Appl. Phys. 84, 6382 (1998)

    Article  ADS  Google Scholar 

  9. H. Neff, S. Henkel, E. Hartmannsgruber, E. Steinbeiss, W. Michalke, K. Steenbeck, H.G. Schmidt, J. Appl. Phys. 79, 7672 (1996)

    Article  ADS  Google Scholar 

  10. K.L. Saenger, J.C. Cabral, C. Lavoie, S.M. Rossnagel, J. Appl. Phys. 86, 6084 (1999)

    Article  ADS  Google Scholar 

  11. A.V. Walker, B. Klötzer, D.A. King, J. Chem. Phys. 109, 6879 (1998)

    Article  ADS  Google Scholar 

  12. R.J. Berry, Can. J. Chem. 55, 1792 (1977)

    Article  Google Scholar 

  13. M. Peuckert, H. Bonzel, Surf. Sci. 145, 239 (1984)

    Article  ADS  Google Scholar 

  14. J. Blackstock, D. Stewart, Z. Li, Appl. Phys. A. 80, 1343 (2005)

    Article  Google Scholar 

  15. L.K. Ono, B. Yuan, H. Heinrich, B.R. Cuenya, J. Phys. Chem. C 114, 22119 (2010)

    Article  Google Scholar 

  16. M.D. Ackermann, T.M. Pedersen, B.L.M. Hendriksen, O. Robach, S.C. Bobaru, I. Popa, C. Quiros, H. Kim, B. Hammer, S. Ferrer, J.W.M. Frenken, Phys. Rev. Lett. 95, 255505 (2005)

    Article  ADS  Google Scholar 

  17. A.V. Kolobov, F. Wilhelm, A. Rogalev, T. Shima, J. Tominaga, Appl. Phys. Lett. 86, 121909 (2005)

    Article  ADS  Google Scholar 

  18. C. Ellinger, A. Stierle, I.K. Robinson, A. Nefedov, H. Dosch, J. Phys. Condens. Matter 20, 184013 (2008)

    Article  ADS  Google Scholar 

  19. N. Zakharchenko, Russ. J. Appl. Chem. 74, 1686 (2001)

    Article  Google Scholar 

  20. N. Seriani, F. Mittendorfer, J. Phys. Condens. Matter 20, 184023 (2008)

    Article  ADS  Google Scholar 

  21. D.J. Miller, H. Öberg, S. Kaya, H. Sanchez Casalongue, D. Friebel, T. Anniyev, H. Ogasawara, H. Bluhm, L.G.M. Pettersson, A. Nilsson, Phys. Rev. Lett. 107, 195502 (2011)

    Article  ADS  Google Scholar 

  22. J. Bandlow, P. Kaghazchi, T. Jacob, C. Papp, B. Tränkenschuh, R. Streber, M.P.A. Lorenz, T. Fuhrmann, R. Denecke, H.-P. Steinrück, Phys. Rev. B 83, 174107 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was undertaken within the European Metrology Research Programme “ENG06 Improved Power Plant Efficiency” project. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Jursic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jursic, I., Rudtsch, S. Thermal Stability of \(\beta \)-PtO\(_2\) Investigated by Simultaneous Thermal Analysis and Its Influence on Platinum Resistance Thermometry. Int J Thermophys 35, 1055–1066 (2014). https://doi.org/10.1007/s10765-014-1695-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1695-0

Keywords

Navigation