Skip to main content
Log in

A Phase-Field Solidification Model of Almost Pure ITS-90 Fixed Points

International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A two-dimensional axisymmetric phase-field model of thermo-solutal solidification in freezing-point cells used for calibrating standard platinum resistance thermometers for realization and dissemination of the International Temperature Scale of 1990 is presented. The cell is essentially a graphite crucible containing an ingot of very pure metal (of order 99.9999 %). A graphite tube is inserted along the axis of the ingot to enable immersion of the thermometer in the metal. In this study, the metal is tin (freezing temperature of \(231.928\,^{\circ }\hbox {C}\)). During the freezing of these cells, a steady, reproducible temperature is realized, with a defined temperature that can be used to calibrate thermometers with uncertainties \({<}1\) mK. The model is applied to understand the effect of experimental parameters, such as initiation technique and furnace homogeneity, on the measured freezing curve. Results show that freezing curves whose behavior is consistent with the Scheil theory of solidification can be obtained with a specific furnace temperature profile, and provided that the freeze is of a long duration, the results are consistent with previous one-dimensional models and experiments. Morphological instability is observed with the inner interface initiation technique, causing the interface to adopt a cellular structure. This elevates the measured temperature, in accordance with the Gibbs–Thomson effect. In addition, the influence of initiation techniques on the solidification behavior is examined. The model indicates that an initially smooth inner mantle can ‘de-wet’ from the thermometer well-forming agglomerated solid droplets, following recalescence, under certain conditions. This manifests as a measured temperature depression due to the Gibbs–Thomson effect, with a magnitude of \(100\, {\upmu }\hbox {K}\) to \(200\,{\upmu }\hbox {K}\) in simulations. The temperature rises to that of the stable outer mantle as freezing progresses and the droplets re-melt. It is demonstrated that the effect occurs below a critical mantle thickness. A physical explanation for the origin of the effect is offered showing that it is consistent with solid-state de-wetting phenomena. Consideration is also given to the limitations of the current model configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. J.V. Pearce, R.I. Veltcheva, D.H. Lowe, Z. Malik, J.D. Hunt, Metrologia 49, 359 (2012)

    Article  ADS  Google Scholar 

  2. B. Fellmuth, K.D. Hill, Metrologia 43, 71 (2006)

    Article  ADS  Google Scholar 

  3. K.D. Hill, S. Rudtsch, Metrologia 42, L1 (2006)

    Article  Google Scholar 

  4. S. Rudtsch, T. Gusarova, A. Aulich, M. Fahr, J. Fischer, H. Kipphardt, R. Matschat, U. Panne, Int. J. Thermophys. 32, 293 (2011)

    Article  ADS  Google Scholar 

  5. E.H. McLaren, Can. J. Phys. 35, 78 (1957)

    Article  ADS  Google Scholar 

  6. E.H. McLaren, Can. J. Phys. 35, 1086 (1957)

    Article  ADS  Google Scholar 

  7. E.H. McLaren, Can. J. Phys. 36, 585 (1958)

    Article  ADS  Google Scholar 

  8. E.H. McLaren, Can. J. Phys. 36, 1131 (1958)

    Article  ADS  Google Scholar 

  9. E.H. McLaren, E.G. Murdock, Can. J. Phys. 38, 100 (1960)

    Article  ADS  Google Scholar 

  10. E.H. McLaren, E.G. Murdock, Can. J. Phys. 38, 577 (1960)

    Article  ADS  Google Scholar 

  11. E.H. McLaren, E.G. Murdock, Can. J. Phys. 41, 95 (1963)

    Article  ADS  Google Scholar 

  12. E.H. McLaren, E.G. Murdock, Can. J. Phys. 46, 369 (1968)

    Article  ADS  Google Scholar 

  13. E.H. McLaren, E.G. Murdock, Can. J. Phys. 46, 401 (1968)

    Article  ADS  Google Scholar 

  14. W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Annu. Rev. Mater. Res. 32, 163 (2002)

    Article  Google Scholar 

  15. L. Gránásy, T. Börzsönyi, T. Pusztai, in Interface and Transport Dynamics, Computational Modelling (Springer, Berlin, 2003), pp. 190–195. ISBN 978-3-540-40367-8

  16. H. Emmerich, The Diffuse Interface Approach in Materials Science (Springer, Berlin, 2003), pp. 1–5. ISBN 978-3-540-00416-5

  17. J.C. Ramirez, C. Beckermann, A. Karma, H.J. Diepers, Phys. Rev. E 69, 051607–1 (2004)

    Article  ADS  Google Scholar 

  18. J.C. Ramirez, C. Beckermann, Acta Mater. 53, 1720 (2005)

    Article  Google Scholar 

  19. J. Rosam, P.K. Jimack, A.M. Mullis, Phys. Rev. E 79, 030601 (2009)

    Article  ADS  Google Scholar 

  20. B. Laird, J. Chem. Phys. 115, 2887 (2001)

    Article  ADS  Google Scholar 

  21. A. Karma, Phys. Rev. Lett. 87, 115701 (2001)

    Article  ADS  Google Scholar 

  22. COMSOL Multiphysics (2014). http://www.comsol.com

  23. K. Yamazawa, J.V. Widiatmo, M. Arai, Int. J. Thermophys. 28, 1941 (2007)

    Article  ADS  Google Scholar 

  24. J.V. Widiatmo, K. Harada, K. Yamazawa, M. Arai, Int. J. Thermophys. 29, 158 (2008)

    Article  ADS  Google Scholar 

  25. J.V. Widiatmo, M. Sakai, K. Satou, K. Yamazawa, Int. J. Thermophys. 32, 309 (2011)

    Article  ADS  Google Scholar 

  26. D.R. White, R.S. Mason, Int. J. Thermophys. 32, 348 (2011)

    Article  ADS  Google Scholar 

  27. H. Preston-Thomas, P. Bloembergen, T.J. Quinn, Supplementary Information for the ITS-90 (Bureau International des Poids et Mesures (BIPM), Sèvres, 1990)

    Google Scholar 

  28. J.A. Dantzig, M. Rappaz, Solidification (CRC Press, Boca Raton, FL, 2009), pp. 49–64. ISBN 978-0-8493-8238-3

  29. J.V. Pearce, R.I. Veltcheva, M.J. Large, AIP Conf. Proc. 1552, 283 (2013)

    Article  ADS  Google Scholar 

  30. M. Fahr, S. Rudtsch, Int. J. Thermophys. 29, 126 (2008)

    Article  ADS  Google Scholar 

  31. W.A. Tiller, J.W. Rutter, Can. J. Phys. 34, 96 (1956)

    Article  ADS  Google Scholar 

  32. W.A. Tiller, K.A. Jackson, J.W. Rutter, B. Chalmers, Acta Metall. 1, 428 (1953)

    Article  Google Scholar 

  33. W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 35, 444 (1964)

    Article  ADS  Google Scholar 

  34. M.Y. Abasov, S.F. Gerasimov, A.G. Ivanova, A.I. Pokhodun, O.S. Shulgat, Int. J. Thermophys. 31, 1663 (2010)

    Article  ADS  Google Scholar 

  35. A.G. Ivanova, M.Y. Abasov, S.F. Gerasimov, A.I. Pokhodun, AIP Conf. Proc. 1552, 243 (2013)

    Article  ADS  Google Scholar 

  36. E. Bussman, F. Cheynis, F. Leroy, P. Muller, O. Pierre-Louis, New J. Phys. 13, 043017 (2011)

    Article  ADS  Google Scholar 

  37. W. Jiang, W. Bao, C.V. Thompson, D.J. Srolovitz, Acta Mater. 60, 5578 (2012)

    Article  Google Scholar 

  38. D. Lowe, J. Pearce, P. Quested, J. Hunt, H. Davies, P. Lee, Z. Malik, D. Head, P. Petchpong. Solidification Science and Technology (Brunel University Press, Uxbridge, West London, 2011). ISBN 978-1-902316-99-4

Download references

Acknowledgments

This work was funded by the UK National Measurement Office and the EMRP. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. Valuable conversations with Richard Rusby (NPL) and John Hunt FRS (Oxford University) are gratefully acknowledged. \({\copyright }\) Crown copyright 2014. Reproduced by permission of the Controller of HMSO and the Queen’s printer for Scotland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Pearce.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Large, M.J., Pearce, J.V. A Phase-Field Solidification Model of Almost Pure ITS-90 Fixed Points. Int J Thermophys 35, 1109–1126 (2014). https://doi.org/10.1007/s10765-014-1685-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1685-2

Keywords

Navigation