Skip to main content
Log in

Experimental Investigation of Heat Conduction in Red Mud/Epoxy and Red Mud/Polyester Composites

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Aluminum is one of the most abundant elements, and its global production generates an immense amount of industrial waste, which is the red mud. Thus, it is necessary to develop technologies aimed to reusing red mud. In this context, this work aims to experimentally examine variations in the effective thermal conductivity of polymers, modified with the addition of different amounts of red mud. To accomplish this goal, composites with (5, 10, 15, 20, and 25) % w/w of red mud waste were manufactured using epoxy and unsaturated polyester resin as matrices. Effective thermal conductivities were measured and quantified. The data found experimentally showed a significant increase of the effective thermal conductivity as the concentration of red mud and temperature increase. The glass transition temperature was not significantly influenced by the red mud waste. Traditional theoretical models underestimate the effective thermal conductivity when compared to experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.M. Margolis, Conductive Polymers and Plastics (Chapman & Hall, New York, 1989)

    Book  Google Scholar 

  2. J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 59, 2514 (1999)

    Article  ADS  Google Scholar 

  3. J. Hong, J. Lee, C.K. Hong, S.E. Shim, J. Therm. Anal. Calorim. 101, 297 (2010)

    Article  Google Scholar 

  4. K.M. Reese, W.H. Cundiff, Ind. Eng. Chem. 47, 1672 (1995)

    Article  Google Scholar 

  5. D. McConchie, M. Clark, F. Davies-McConchie, “New Strategies for the Management of Bauxite Refinery Residues (Red Mud),” in Proceedings of the 6th International Alumina Quality Workshop (Brisbane, Australia, 2001), pp. 327–332

  6. J. Pradhan, S.N. Das, J. Das, S.B. Rao, R.S. Thakur, Light Met. 1, 87 (1996)

    Google Scholar 

  7. B. Garnier, B. Agodjil, A. Boudenne, in Polymer Composites, Chap. 18, vol. 1, 1st edn., ed. by S. Thomas, K. Joseph, S.K. Malhotra, K. Goda, M.S. Sreekala (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013), p. 575

  8. N.M. Sofian, M. Rusu, R. Neagu, E. Neagu, J. Thermoplast. Compos. Mater. 14, 20 (2001)

    Article  Google Scholar 

  9. I. Krupa, I. Chodak, Eur. Polym. J. 37, 2159 (2001)

    Article  Google Scholar 

  10. A.T. Ponomarenko, V.G. Schevchenko, N.S. Enykolopyan, Adv. Polym. Sci. 96, 125 (1999)

    Article  Google Scholar 

  11. A.A. Abdul Razak, N.J. Salah, W. Abdul Kazem, Eng. Technol. 27, 2223 (2009)

    Google Scholar 

  12. R. Karthik, R. Harish Nagarajan, B. Raja, P. Damodharan, Exp. Therm. Fluid Sci. 40, 1 (2012)

    Article  Google Scholar 

  13. X. Zhang, H. Gu, M. Fujii, Exp. Therm. Fluid Sci. 31, 593 (2007)

    Article  Google Scholar 

  14. I. Nkurikiyimfura, Y. Wang, Z. Pan, Exp. Therm. Fluid Sci. 44, 607 (2013)

    Article  Google Scholar 

  15. L. Rena, K. Pashayib, H.R. Fardb, S.P. Kothab, T. Borca-Tasciucc, R. Ozisika, Composites B 58, 228 (2014)

    Article  Google Scholar 

  16. X. Wang, Z.M. Wang (eds.), Nanoscale Thermoelectrics, vol. 16, Lecture Notes in Nanoscale Science and Technology (Springer, Cham, Switzerland, 2013)

  17. J.N.N. Quaresma, E.N. Macêdo, H.M. da Fonseca, H.R.B. Orlande, R.M. Cotta, Heat. Transf. Eng. 31, 1125 (2010)

    Article  ADS  Google Scholar 

  18. P. Vadasz, J. Heat. Transf. 128, 465 (2006)

    Article  Google Scholar 

  19. K. Sanada, Y. Tada, Y. Shindo, Composites A 40, 724 (2009)

    Article  Google Scholar 

  20. D. Kumlutas, I.H. Tavman, M.T. Çoban, Compos. Sci. Technol. 63, 113 (2003)

    Article  Google Scholar 

  21. J.G. Park, Q. Cheng, J. Lu, J. Bao, S. Li, Y. Tian, Z. Liang, C. Zhang, B. Wang, Carbon 50, 2083 (2012)

    Article  Google Scholar 

  22. C.Y. Iguchi, W.N. dos Santos, R. Gregorio Jr, Polym. Test. 26, 788 (2007)

    Article  Google Scholar 

  23. H. Liem, H.S. Choy, Solid State Commun. 163, 41 (2013)

    Article  ADS  Google Scholar 

  24. S.M. Ha, H.L. Lee, S. Lee, B.G. Kim, Y.S. Kim, J.C. Won, W.J. Choi, D.C. Lee, J. Kim, Y. Yoo, Compos. Sci. Technol. 88, 113 (2013)

    Article  Google Scholar 

  25. A. Patnaik, M. Abdulla, A. Satapathy, S. Biswas, B.K. Satapathy, Mater. Des. 31, 837 (2010)

    Article  Google Scholar 

  26. S.I. Kundalwal, M.C. Ray, Int. J. Therm. Sci. 76, 90 (2014)

    Article  Google Scholar 

  27. K. Liu, Z. Yang, H. Takagi, Compos. Struct. 108, 987 (2014)

    Article  Google Scholar 

  28. J. Liang, Composites B 56, 431 (2014)

    Article  Google Scholar 

  29. S. Yu, S. Jeong, O. Chung, S. Kim, Sol. Energy Mater. Sol. Cells 120, 549 (2014)

    Article  Google Scholar 

  30. W. Zhou, C. Wang, T. Ai, K. Wu, F. Zhao, H. Gu, Composites A 40, 830 (2009)

    Article  Google Scholar 

  31. E.B. Silva Filho, M.C. Alves, M. da Motta, Revista Matéria 12, 322 (2007)

    Article  Google Scholar 

  32. A.N. Macêdo, D.H.P. Costa, S.R.S. Trindade, J.A.S. Souza, R.J.F.M. Carneiro, Ambiente Construído 11, 25 (2011)

    Article  Google Scholar 

  33. D.C. Moreira, L.A. Sphaier, J.M.L. Reis, L.C.S. Nunes, Exp. Therm. Fluid Sci. 35, 1458 (2011)

    Article  Google Scholar 

  34. J.C. Maxwell Garnett, Philos. Trans. R. Soc. Lond. A 203, 385 (1904)

    Article  ADS  Google Scholar 

  35. D.A.G. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935)

    Article  ADS  Google Scholar 

  36. J. Ordóñez-Miranda, J.J. Alvarado-Gil, R. Medina-Ezquivel, Int. J. Thermophys. 31, 975 (2010)

    Article  ADS  Google Scholar 

  37. D.J. Jeffrey, Philos. Trans. R. Soc. Lond. A 335, 355 (1973)

    ADS  Google Scholar 

  38. R.H. Davis, Int. J. Thermophys. 7, 609 (1986)

    Article  ADS  Google Scholar 

  39. J. Ordonez-Miranda, R. Yang, J.J. Alvarado-Gil, J. Appl. Phys. 114, 064306 (2013)

    Article  ADS  Google Scholar 

  40. V. Strezov, T.J. Evans, V. Zymla, L. Strezov, Int. J. Miner. Process. 100, 27 (2011)

    Article  Google Scholar 

  41. Z.M. Elimat, F.S. AL-Aqrabawi, T.A. Hazeem, Y. Ramadin, A.M. Zihlif, Int. J. Thermophys. 34, 2009 (2013)

    Article  ADS  Google Scholar 

  42. A. Iqbal, L. Frormann, A. Saleem, M. Ishaq, Polym. Compos. 28, 186 (2007)

    Article  Google Scholar 

  43. Z.M. Elimat, A.M. Zihlif, G. Ragosta, J. Thermoplast. Compos. Mater. 23, 793 (2010)

    Article  Google Scholar 

  44. Z.M. Elimat, W.T. Hussain, A.M. Zihlif, J. Mater. Sci. Mater. Electron. 23, 2117 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Research Foundation of the State of Rio de Janeiro (FAPERJ), the Brazilian National Council for Scientific and Technological Development (CNPq), and the Coordination for the Improvement of Higher Education Personnel (CAPES) for supporting part of the work presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. L. Reis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, T.M., Reis, J.M.L. Experimental Investigation of Heat Conduction in Red Mud/Epoxy and Red Mud/Polyester Composites. Int J Thermophys 35, 1590–1600 (2014). https://doi.org/10.1007/s10765-014-1684-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1684-3

Keywords

Navigation