Skip to main content
Log in

Dilution Refrigerator for Nuclear Refrigeration and Cryogenic Thermometry Studies

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This study explores the design and construction of an ultra-low temperature facility in order to realize the Provisional low-temperature scale from 0.9 mK to 1 K (PLTS-2000) in Japan, to disseminate its use through calibration services, and to study thermometry at low temperatures below 1 K. To this end, a dilution refrigerator was constructed in-house that has four sintered silver discrete heat exchangers for use as a precooling stage of a copper nuclear demagnetization stage. A \(^{3}\text {He}\) melting curve thermometer attached to the mixing chamber flange could be cooled continuously to 4.0 mK using the refrigerator. The dependence of minimum temperatures on circulation rates can be explained by the calculation of Frossati’s formula based on a perfect continuous counterflow heat exchanger model, assuming that the Kapitza resistance has a \(T^{-3}\) temperature dependence. Residual heat leakage to the mixing chamber was estimated to be around 86 nW. A nuclear demagnetization cryostat with a nuclear stage containing an effective amount of copper (51 mol in a 9 T magnetic field) is under construction, and we will presently start to work toward the realization of the PLTS-2000. In this article, the design and performance of the dilution refrigerator are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.L. Rusby, M. Durieux, A.L. Reesink, R.P. Hudson, G. Schuster, M. Kuhne, W.E. Fogle, R.J. Soulen, E.D. Adams, J. Low Temp. Phys. 126, 633 (2002)

    Article  ADS  Google Scholar 

  2. Supplementary Information for the Realization of the PLTS-2000 (Bureau International des Poids et Mesures-BIPM, Sèvres, France, 2000), www.bipm.org/utils/en/pdf/PLTS-2000_supplementary.pdf. Accessed 28 April 2014

  3. J. Pekola, K.P. Hirvi, J.P. Kauppinen, M.A. Paalanen, Phys. Rev. Lett. 73, 2903 (1994)

    Article  ADS  Google Scholar 

  4. J. Pekola, T. Holmqvist, M. Meschke, Phys. Rev. Lett. 101, 206801 (2008)

    Article  ADS  Google Scholar 

  5. L. Spietz, K.W. Lehnert, I. Siddiqi, R.J. Schoelkopf, Science 300, 1929 (2003)

    Article  ADS  Google Scholar 

  6. A.M. Guénault, V. Keith, C.J. Kennedy, S.G. Mussett, G.R. Pickett, J. Low Temp. Phys. 62, 511 (1986)

    Article  ADS  Google Scholar 

  7. C. Bäuerle, YuM Bunkov, S.N. Fisher, H. Godfrin, Phys. Rev. B 57, 14381 (1998)

    Article  ADS  Google Scholar 

  8. R. Blaauwgeers, M. Bazkova, M. Človečko, V.B. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Shoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low Temp. Phys. 146, 537 (2007)

    Article  ADS  Google Scholar 

  9. H. Preston-Thomas, Metrologia 27, 3, 107 (Erratum) (1990)

  10. T. Shimazaki, K. Toyoda, O. Tamura, Int. J. Thermophys. 32, 2171 (2011)

    Article  ADS  Google Scholar 

  11. F. Pobell, Matter and Methods at Low Temperatures, 3rd edn. (Springer, Berlin, 2007)

    Book  Google Scholar 

  12. T. Hata, S. Yamasaki, M. Taneda, T. Kodama, T. Shigi, Phys. Rev. Lett. 51, 1573 (1983)

    Article  ADS  Google Scholar 

  13. A. Sawada, S. Inoue, Y. Masuda, Cryogenics 26, 486 (1986)

    Article  ADS  Google Scholar 

  14. G. Frossati, H. Godfrin, B. Hébral, G. Schumacher, D. Thoulouze, in Proceedings Ultralow Temperatures Symposium, Hakoné, Japan, 1977, pp. 205–225

  15. G. Frossati, J. Phys. 39, 1578 (1978)

    Google Scholar 

  16. A. Raccanelli, L.A. Reichertz, E. Kreysa, Cryogenics 41, 763 (2001)

    Article  ADS  Google Scholar 

  17. P. Gorla, C. Bucci, S. Pirro, Nucl. Instrum. Methods Phys. Res. Sect. A 520, 641 (2004)

  18. G. Frossati, J. Low Temp. Phys. 87, 595 (1992)

    Article  ADS  Google Scholar 

  19. Y. Oda, Butsuri 37, 409 (1982)

    Google Scholar 

  20. G.C. Straty, E.D. Adams, Rev. Sci. Instrum. 40, 1393 (1969)

    Article  ADS  Google Scholar 

  21. D.S. Greywall, P.A. Busch, J. Low Temp. Phys. 46, 451 (1982)

    Article  ADS  Google Scholar 

  22. J. Xu, O. Avenel, J.S. Xia, M.-F. Xu, T. Lang, P.L. Moyland, W. Ni, E.D. Adams, G.G. Ihas, M.W. Meisel, N.S. Sullivian, Y. Takano, J. Low Temp. Phys. 89, 719 (1992)

    Article  ADS  Google Scholar 

  23. R. Radebaugh, J.D. Siegwarth, Cryogenics 11, 368 (1971)

    Article  ADS  Google Scholar 

  24. J.D. Siegwarth, R. Radebaugh, Rev. Sci. Instrum. 43, 197 (1972)

    Article  ADS  Google Scholar 

  25. G.A. Vermeulen, G. Frossati, Cryogenics 27, 139 (1987)

    Article  ADS  Google Scholar 

  26. W. Yao, T.A. Knuuttila, K.K. Nummila, J.E. Martikainen, A.S. Oja, O.V. Lounasmaa, J. Low Temp. Phys. 120, 121 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge valuable discussions with Osamu Tamura, Takeshi Shimazaki, Tohru Nakano, Hirohisa Sakurai, Keishi Toyoda, and Sachiko Takasu. We would like to thank the members of the machine shops of the AIST and Osaka City University for constructing components of the dilution refrigerator and for their other useful technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Nakagawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakagawa, H., Hata, T. Dilution Refrigerator for Nuclear Refrigeration and Cryogenic Thermometry Studies. Int J Thermophys 35, 999–1018 (2014). https://doi.org/10.1007/s10765-014-1670-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1670-9

Keywords

Navigation