Skip to main content

Advertisement

Log in

Exploratory Characterization of a Perfluoropolyether Oil as a Possible Viscosity Standard at Deepwater Production Conditions of 533 K and 241 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

An Erratum to this article was published on 12 February 2015

Abstract

DuPont’s perfluoropolyether oil Krytox\(^{\textregistered }\) GPL 102 is a promising candidate for the high-temperature, high-pressure Deepwater viscosity standard (DVS). The preferred DVS is a thermally stable liquid that exhibits a viscosity of roughly 20 \(\hbox {mPa} \cdot \hbox {s}\) at 533 K and 241 MPa; a viscosity value representative of light oils found in ultra-deep formations beneath the deep waters of the Gulf of Mexico. A windowed rolling-ball viscometer designed by our team is used to determine the Krytox\(^{\textregistered }\) GPL 102 viscosity at pressures to 245 MPa and temperatures of 311 K, 372 K, and 533 K. At 533 K and 243 MPa, the Krytox\(^{\textregistered }\) GPL 102 viscosity is \((27.2 \pm 1.3)\,\hbox {mPa} \cdot \hbox {s}\). The rolling-ball viscometer viscosity results for Krytox\(^{\textregistered }\) GPL 102 are correlated with an empirical 10-parameter surface fitting function that yields an MAPD of 3.9 %. A Couette rheometer is also used to measure the Krytox\(^{\textregistered }\) GPL 102 viscosity, yielding a value of \((26.2 \pm 1)\,\hbox {mPa} \cdot \hbox {s}\) at 533 K and 241 MPa. The results of this exploratory study suggest that Krytox\(^{\textregistered }\, \hbox {GPL}\) 102 is a promising candidate for the DVS, primarily because this fluoroether oil is thermally stable and exhibits a viscosity closer to the targeted value of 20 mPa \(\cdot \) s at 533 K and 241 MPa than any other fluid reported to date. Nonetheless, further studies must be conducted by other researcher groups using various types of viscometers and rheometers on samples of Krytox GPL\(^{\textregistered }\) 102 from the same lot to further establish the properties of Krytox GPL\(^{\textregistered }\) 102.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Minutes of the 9th IATP Meeting. (IATP Meeting, June 20, 2009, Boulder, CO), http://transp.cheng.auth.gr/mja/iatp/09_Boulder_Min.pdf. Accessed Dec 2012

  2. HTHP Viscosity Standards Workshop Executive Summary. (HTHP Viscosity Standards Workshop, Jan 22, 2010), https://www.slb.com/~/media/Files/core_pvt_lab/other/hpht_viscosity_standards_workshop_2010_summary.pdf. Accessed Dec 2012

  3. R. Kasameyer, D. Airey, J. Cole, Viscometer State-of-the-Art (HTHP Viscosity Standards Workshop, Jan 22, 2010), https://www.slb.com/~/media/Files/core_pvt_lab/other/high_pressure_viscometers.pdf. Accessed Dec 2012

  4. A. Goodwin, Plausible Industrial Reference Fluids for Viscosity (HTHP Viscosity Standards Workshop, Jan 22, 2010), https://www.slb.com/~/media/Files/core_pvt_lab/other/industrial_reference_fluids_viscosity.pdf. Accessed Dec 2012

  5. K.J.L. Paciorek, R.H. Kratzer, J. Kaufman, J.H. Nakahara, J. Appl. Polym. Sci. 24, 1397 (1979)

    Article  Google Scholar 

  6. www.krytox.com. Accessed June 2013

  7. R. Fix, ChemPoint. Private communication (2013)

  8. R. Enick, E. Beckman, A. Yazdi, V. Krukonis, H. Schonemann, J. Howell, J. Supercrit. Fluids 13, 121 (1998)

    Article  Google Scholar 

  9. M.E. Paulaitis, V.J. Krukonis, R. Kurnik, R. Reid, Rev. Chem. Eng. 1, 179 (1983)

    Google Scholar 

  10. W. Gussler, M. Pless, J. Maxey, P. Grover, J. Perez, J. Moon, T. Boaz, SPE Drill Complet. 22, 81 (2007)

    Article  Google Scholar 

  11. B.A. Bamgbade, Y. Wu, W.A. Burgess, M.A. McHugh, Fluid Phase Equilib. 332, 159 (2012)

    Article  Google Scholar 

  12. K. Selby, DuPont performance lubricants. Private communication (2010)

  13. R.V. Kleinschmidt, D. Bradbury, M. Mark, in Viscosity and Density of over Forty Lubricating Fluids of Known Composition at Pressures to 150,000 psi and Temperatures to 425 F (ASME Report, New York, 1953)

  14. K. Harris, J. Chem. Eng. Data 54, 2729 (2009)

    Article  Google Scholar 

  15. S. Sawamura, T. Yamashita, Rolling-ball viscometer for studying water and aqueous solutions under high pressure, in Proceedings of the 14th International Conference on the Properties of Water and Steam (Kyoto, 2004), p. 429

  16. H.O. Baled, Density and viscosity of hydrocarbons at extreme conditions associated with ultra-deep reservoirs-measurements and modeling. Dissertation, University of Pittsburgh, 2012

  17. B.A. Bamgbade, Y. Wu, H.O. Baled, R.M. Enick, W.A. Burgess, D. Tapriyal, M.A. McHugh, J. Chem. Thermodyn. 63, 102 (2013)

    Article  Google Scholar 

  18. H. Baled, R. Enick, W. Burgess, J. Jain, B. Morreale, Y. Soong, D. Tapriyal, Y. Wu, B. Bamgbade, M.A. McHugh, in A windowed, variable-volume, rolling-ball viscometer rated to \(260^{\circ }\text{ C }\) and 275 MPa, presented at 18th Symposium on Thermophysical Properties (Boulder, CO, 2012)

  19. J.H. Dymond, R. Malhotra, Int. J. Thermophys. 9, 941 (1988)

    Article  ADS  Google Scholar 

  20. Y. Sato, H. Yoshioka, S. Aikawa, R.L. Smith Jr, Int. J. Thermophys. 31, 1896 (2010)

    Article  ADS  Google Scholar 

  21. M. Izuchi, K. Nishibata, Jpn. J. Appl. Phys. 25, 1091 (1986)

    Article  ADS  Google Scholar 

  22. Inconel\(^{\textregistered }\) alloy 718, http://www.specialmetals.com/products/inconelalloy718.php. Accessed June 2013

  23. R.M. Hubbard, G.G. Brown, Ind. Eng. Chem. Anal. Ed. 15, 212 (1943)

    Google Scholar 

  24. Wolfram Alpha, http://www.wolframalpha.com/. Accessed May 2013

  25. J. Šesták, F. Ambros, Rheol. Acta 12, 70 (1973)

    Article  Google Scholar 

  26. E.W. Lemmon, M.O. McLinden, D.G. Friend, in Thermophysical Properties of Fluid Systems, NIST Chemistry Webbook, NIST Standard Reference Database Number 69, ed. by P.J. Lindstrom, W.G. Mallard (National Institute of Standards and Technology, Gaithersburg, MD), http://webbook.nist.gov/chemistry/fluid/. Accessed Dec 2012

  27. H. Baled, R.M. Enick, W. Burgess, D. Tapriyal, B.D. Morreale, Y. Wu, B.A. Bamgbade, M.A. McHugh, S. Bair, V. Krukonis, in Perfluoropolyether oils as Candidates for the Deepwater Viscosity Standard of 20 cP at \(500^{\circ }\text{ F }\) and 35000 psia, Presented at 12th IATP Meeting (June 24, 2012, Boulder, CO), Minutes of the 12th IATP Meeting, http://transp.eng.auth.gr/index.php/iatp/2012. Accessed Aug 2013

Download references

Acknowledgments

This technical effort was performed in support of the National Energy Technology Laboratory’s Office of Research and Development support of the Strategic Center for Natural Gas and Oil under RES contract DE-FE0004000, which supported the doctoral studies of Hseen Baled [16]. We would like to express our gratitude for the numerous insights and helpful suggestions provided by Arno Laesecke of the National Institute of Standards and Technology (NIST), Thermophysical Properties Division, Boulder, CO, and Scott Bair of the George W. Woodruff School of Mechanical Engineering, Georgia Tech, Atlanta, GA. Laesecke and Bair were the first to suggest that DuPont’s Krytox\(^{\textregistered }\) perfluoropolyether oils are excellent DVS candidates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Enick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baled, H.O., Tapriyal, D., Morreale, B.D. et al. Exploratory Characterization of a Perfluoropolyether Oil as a Possible Viscosity Standard at Deepwater Production Conditions of 533 K and 241 MPa. Int J Thermophys 34, 1845–1864 (2013). https://doi.org/10.1007/s10765-013-1500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1500-5

Keywords

Navigation