Skip to main content
Log in

Absorption Coefficients of Crystalline Silicon at Wavelengths from 500 nm to 1000 nm

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The absorption coefficient of single-crystal silicon is very important for applications in semiconductor processing and solar cells. However, large discrepancies exist in the literature about the absorption coefficient of silicon, especially in the visible and near-infrared region. Most existing review articles lack mutual comparison, and some are out of date. Due to the difficulties in accurate determination of the Si absorption coefficient in this region, additional measurements are deemed necessary. In the present study, room-temperature absorption coefficients of Si are obtained from transmittance measurements of ultrathin wafers down to \(10~\upmu \mathrm{m}\) thickness, at wavelengths from 500 nm to 1000 nm, using an integrating sphere and a monochromator. Furthermore, a systematic survey of available references and detailed intercomparison of existing results are performed, resulting in a critical assessment of the previous and current measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.J. Timans, in Advances in Rapid Thermal and Integrated Processing, ed. by F. Roozeboom (Kluwer Academic Publishers, Dordrecht, 1996), pp. 35–93

    Chapter  Google Scholar 

  2. Y.-B. Chen, Z.M. Zhang, P.J. Timans, J. Heat Transfer 129, 79 (2007)

    Article  Google Scholar 

  3. International Technology Roadmap for Semiconductors - 2011 edn., www.itrs.net/Links/2011ITRS/Home2011.htm (updated January 2012)

  4. M.A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, New York, 2003), pp. 1–4

    Google Scholar 

  5. H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010)

    Article  ADS  Google Scholar 

  6. L. Hu, G. Chen, Nano Lett. 7, 3249 (2007)

    Article  ADS  Google Scholar 

  7. E. Garnett, P.D. Yang, Nano Lett. 10, 1082 (2010)

    Article  ADS  Google Scholar 

  8. Z.M. Zhang, H. Ye, in Annual Review of Heat Transfer, ed. by G. Chen (Begell House, New York, 2013)

    Google Scholar 

  9. H. Wang, X.L. Liu, L.P. Wang, Z.M. Zhang, Int. J. Therm. Sci. 65, 62 (2013)

    Article  Google Scholar 

  10. M.L. Cohen, J.R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductor (Springer, Berlin, 1988)

    Book  Google Scholar 

  11. Z.M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, New York, 2007)

    Google Scholar 

  12. D.E. Aspnes, A.A. Studna, Phys. Rev. B 27, 985 (1983)

    Article  ADS  Google Scholar 

  13. G.E. Jellison Jr., Opt. Mater. 1, 41 (1992)

  14. C.M. Herzinger, B. Johs, W.A. McGahan, J.A. Woollam, W. Paulson, J. Appl. Phys. 83, 3323 (1998)

    Article  ADS  Google Scholar 

  15. E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985), pp. 547–569

    Google Scholar 

  16. J. Geist, in Handbook of Optical Constants of Solids, vol. 3, ed. by E.D. Palik (Academic Press, San Diego, 1998), pp. 519–529

  17. M.A. Green, Sol. Energy Mater. Sol. Cells 92, 1305 (2008)

    Article  Google Scholar 

  18. M.J. Keevers, M.A. Green, Appl. Phys. Lett. 66, 174 (1995)

    Article  ADS  Google Scholar 

  19. E. Daub, P. Wurfel, Phys. Rev. Lett. 74, 1020 (1995)

    Article  ADS  Google Scholar 

  20. W.C. Dash, R. Newman, Phys. Rev. 99, 1151 (1955)

    Article  ADS  Google Scholar 

  21. H.A. Weakliem, D. Redfield, J. Appl. Phys. 50, 1491 (1979)

    Article  ADS  Google Scholar 

  22. G.G. Macfarlane, T.P. Mclean, J.E. Quarrington, V. Roberts, Phys. Rev. 111, 1245 (1958)

    Article  ADS  Google Scholar 

  23. M. Saritas, H.D. McKell, J. Appl. Phys. 61, 4923 (1987)

    Article  ADS  Google Scholar 

  24. T. Globus, S.H. Jones, T. Digges Jr., in Proceedings of the 1997 International Semiconductor Device Research Symposium (Charlottesville, VA, 1997), pp. 71–74

  25. R. Hulthen, Phys. Scr. 12, 342 (1975)

    Article  ADS  Google Scholar 

  26. J. Geist, A.R. Schaefer, J.F. Song, Y.H. Wang, E.F. Zalewski, J. Res. Natl. Inst. Stand. Technol. 95, 549 (1990)

    Article  Google Scholar 

  27. H.R. Philipp, H. Ehrenreich, Phys. Rev. 129, 1550 (1963)

    Article  ADS  Google Scholar 

  28. H.R. Philipp, J. Appl. Phys. 43, 2835 (1972)

    Article  ADS  Google Scholar 

  29. J. Geist, A. Migdall, H.P. Baltes, Appl. Opt. 27, 3777 (1988)

    Article  ADS  Google Scholar 

  30. T.R. Gentile, J.M. Houston, C.L. Cromer, Appl. Opt. 35, 4392 (1996)

    Article  ADS  Google Scholar 

  31. G.E. Jellison Jr., F.A. Modine, J. Appl. Phys. 76, 3758 (1994)

    Google Scholar 

  32. B.J. Lee, Z.M. Zhang, E.A. Early, D.P. DeWitt, B.K. Tsai, J. Thermophys. Heat Transfer 19, 558 (2005)

    Article  Google Scholar 

  33. P.J. Timans, J. Appl. Phys. 74, 6353 (1993)

    Article  ADS  Google Scholar 

  34. B.J. Lee, V. Khuu, Z.M. Zhang, J. Thermophys. Heat Transfer 19, 360 (2005)

    Article  Google Scholar 

  35. H.J. Lee, A.C. Bryson, Z.M. Zhang, Int. J. Thermophys. 28, 918 (2007)

    Article  ADS  Google Scholar 

  36. X.J. Wang, J.D. Flicker, B.J. Lee, W.J. Ready, Z.M. Zhang, Nanotechnology 20, 215704 (2009)

    Article  ADS  Google Scholar 

  37. B.N. Taylor, C.E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Tech. Note 1297 (U.S. Government Printing Office, Washington, DC, 1994)

Download references

Acknowledgments

This work was supported by the Department of Energy (DE-FG02-06ER46343). The authors wish to thank Dr. Liping Wang and Dr. Hong Ye for valuable discussions. H. Wang would like to thank the China Scholarship Council for supporting her to study abroad through the Ph.D. Joint Training Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuomin M. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Liu, X. & Zhang, Z.M. Absorption Coefficients of Crystalline Silicon at Wavelengths from 500 nm to 1000 nm. Int J Thermophys 34, 213–225 (2013). https://doi.org/10.1007/s10765-013-1414-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1414-2

Keywords

Navigation