Skip to main content

Advertisement

Log in

Thermal Conductivity of Humid Air

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this article, measurements of the thermal conductivity of humid air as a function of pressure, temperature, and mole fraction of water, for pressures up to 5 MPa and temperatures up to 430 K, for different water contents (up to 10 % vapor mole fraction) are reported. Measurements were performed using a transient hot-wire apparatus capable of obtaining data with an uncertainty of 0.8 % for gases. However, as moist air becomes corrosive above 373 K and at pressures >5 MPa, the apparatus, namely, the pressure vessel and the cells had to be modified, by coating all stainless-steel parts with a titanium nitride thin film coating, about 4 μm thick, obtained by physical vapor deposition. The expanded uncertainty (coverage factor k = 2) of the present experimental thermal conductivity data is 1.7 %, while the uncertainty in the mole fraction is estimated to be better than 0.0006. Experimental details regarding the preparation of the samples, the precautions taken to avoid condensation in the tubes connected to the measuring cell, and the method developed for obtaining reliable values of the water content for the gas mixtures are discussed. A preliminary analysis of the application of the kinetic theory of transport properties in reacting mixtures to interpret the complex dependence of the thermal conductivity of humid air on water composition is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Grüß, H. Schmick, Wissensch. Veröffentl. Siemens Konzern, 203–224 (1928)

  2. M.J. Assael, C.A. Nieto de Castro, H.M. Roder, W.A. Wakeham, in Measurement of the Transport Properties of Fluids, chap. 7, ed. by W.A. Wakeham, A. Nagashima, J.V. Sengers (Blackwells, Oxford, 1992), pp. 161–194

  3. Beirão S.G.S., Ramires M.L.V., Dix M., Nieto de Castro C.A.: Int. J. Thermophys. 27, 1018 (2006)

    Article  ADS  Google Scholar 

  4. S.G.S. Beirão, A.P. Ribeiro, M.J.V. Lourenço, F.J.V. Santos, C.A. Nieto de Castro, in Thermal Conductivity 29, ed. by J. Koenig, H. Ban (DEStech Publications, Inc., Lancaster, PA, 2008), pp. 345–355

  5. Wei D.B., Huang J.X., Zhang A.W., Jiang Z.Y., Tieu A.K., Shi X., Jiao S.H., Qu X.Y.: Wear 267, 1741 (2009)

    Article  Google Scholar 

  6. Koike M.H.: Corros. Sci. 48, 617 (2006)

    Article  Google Scholar 

  7. Project NNE5-2001-00473, “Advanced Adiabatic Compressed Air Energy Storage,” ALSTOM Power, UK (Coordinator), funded by the European Community under the Energy, Environment and Sustainable Development Program (1998–2002)

  8. M.L.V. Ramires, C.A. Nieto de Castro, in Proceedings of TEMPMEKO 2001, 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, vol. 2, ed. by B. Fellmuth, J. Seidel, G. Scholz (VDE Verlag, Berlin, 2002), pp. 1181–1186

  9. Nieto de Castro C.A., Taxis B., Roder H.M., Wakeham W.A.: Int. J. Thermophys. 9, 293 (1988)

    Article  ADS  Google Scholar 

  10. Siegel R., Howell J.R.: Thermal Radiation Heat Transfer. Hemisphere Publishing Corp., New York (1981)

    Google Scholar 

  11. Nieto de Castro C.A., Perkins R.A., Roder H.M.: Int. J. Thermophys. 12, 985 (1991)

    Article  ADS  Google Scholar 

  12. Y.S. Touloukian, D.P. DeWitt, in Thermal Radiative Properties—Metallic Elements and Alloys (Plenum Press, New York, 1970)

  13. Lourenço M.J., Serra J.M., Nunes M.R., Nieto de Castro C.A.: Ceram. Trans. 86, 213 (1997)

    Google Scholar 

  14. Lourenço M.J., Serra J.M., Nunes M.R., Vallêra A.M., Nieto de Castro C.A.: Int. J. Thermophys. 19, 1253 (1998)

    Article  Google Scholar 

  15. Melling A., Noppenberger S., Still M., Venzke H.: J. Phys. Chem. Ref. Data 26, 1111 (1997)

    Article  ADS  Google Scholar 

  16. Lemmon E.W., McLinden M.O., Huber M.L.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties, REFPROP® Version 8.0. (National Institute of Standards and Technology, Gaithersburg, MD 2002)

    Google Scholar 

  17. Mason E.A., Saxena S.C.: Phys. Fluids 1, 361 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  18. Wassiljewa A.: Phys. Z. 5, 737 (1904)

    MATH  Google Scholar 

  19. J. Millat, J.H. Dymond, C.A. Nieto de Castro (eds.), The Transport Properties of Fluids—Their Correlation, Prediction and Estimation (Cambridge University Press, London, 1996)

  20. S. Herrmann, H.-J. Kretzschmar, V. Teske, E. Vogel, P. Ulbig, R. Span, D.P. Gatley, “Determination of Thermodynamic and Transport Properties of Humid Air for Power-Cycle Calculations,” Physikalisch-Technische Bundenanstalt, Chemische Physik, PTB-CP-3 (Braunschweig, 2009), ISBN-978-3-86509-917-4

  21. Vesovic V., Wakeham W.A.: Chem. Eng. Sci. 44, 2181 (1989)

    Article  Google Scholar 

  22. Vesovic V., Wakeham W.A.: High Temp. High Press. 23, 179 (1991)

    Google Scholar 

  23. Fialho P.S., Ramires M.L.V., Fareleira J.M.N.A., Mardolcar U.V., Nieto de Castro C.A.: Ber. Bunsenges. Phys. Chem. 98, 92 (1994)

    Article  Google Scholar 

  24. P.S. Fialho, M.L.V. Ramires, J.M.N.A. Fareleira, C.A. Nieto de Castro, Reacting mixtures at low density—alkali metal vapors, in The Transport Properties of Fluids—Their Correlation, Prediction and Estimation, chap. 16, ed. by J. Millat, J.H. Dymond, C.A. Nieto de Castro (Cambridge University Press, London, 1996), pp. 400–419

  25. Apelblat A., Fialho P.S., Nieto de Castro C.A.: Fluid Phase Equilib. 227, 215 (2005)

    Article  Google Scholar 

  26. Maitland G.C., Rigby M., Smith E.B., Wakeham W.A.: Intermolecular Forces—Their Origin and Determination. Clarendon Press, Oxford (1987)

    Google Scholar 

  27. Stogryn D.E., Hirschfelder J.O.: J. Chem. Phys. 31, 1545 (1959)

    Article  ADS  Google Scholar 

  28. J. Millat, V. Vesovic, W.A. Wakeham, Transport properties of dilute gases and gaseous mixtures, in The Transport Properties of Fluids—Their Correlation, Prediction and Estimation, chap. 4, ed. by J. Millat, J.H. Dymond, C.A. Nieto de Castro (Cambridge University Press, London, 1996), pp. 29–65

  29. Herrmann S., Kretzschmar H.-J., Teske V., Vogel E., Ulbig P., Span R., Gatley D.P.: J. Eng. Gas Turbines Power 132, 0–1 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.A. Nieto de Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beirão, S., Ribeiro, A., Lourenço, M. et al. Thermal Conductivity of Humid Air. Int J Thermophys 33, 1686–1703 (2012). https://doi.org/10.1007/s10765-012-1254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1254-5

Keywords

Navigation