Skip to main content

Advertisement

Log in

Simultaneous Identification of Temperature-Dependent Thermal Properties via Enhanced Genetic Algorithm

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Simultaneous inverse identification of the temperature-dependent volumetric heat capacity and thermal conductivity of a solid material based on transient temperature histories was studied. The inverse problem was defined according to the evaluation of the BICOND thermophysical property measurement method. The material property functions were defined by several data points with linear interpolation between them. In this way, no previous information is needed about the expected temperature dependency of the material property functions. The inverse problem was solved by a real-valued genetic algorithm using simulated measurement results. New genetic operators (smooth initialization and smooth mutation) were developed and applied. The accuracy of the inverse solution was studied in two test cases including linear, square, and sinusoidal functions. The effects of regularization and random noise in the temperature histories were also analyzed. Based on the results, the proposed method is likely to be effective in evaluation of real measured temperature histories to simultaneously determine temperature-dependent thermophysical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Kiss, Determination of Thermal Properties. C.Sc. Thesis, Hungarian Academy of Sciences, Budapest, 1983 (in Hungarian)

  2. Yang C.: Int. J. Heat Mass Transf. 43, 1261 (2000)

    Article  MATH  Google Scholar 

  3. Zmywaczyk J.: Arch. Thermodyn. 27(2), 37 (2006)

    Google Scholar 

  4. Zhao S., Zhang B., Du S., He X.: Int. J. Thermophys. 30, 2021 (2009)

    Article  ADS  Google Scholar 

  5. Zmywaczyk J.: Arch. Thermodyn. 27, 39 (2006)

    Google Scholar 

  6. Borukhov V.T., Timoshpol’skii V.I.: J. Eng. Phys. Thermophys. 78, 695 (2005)

    Article  Google Scholar 

  7. Huang C., Yan J.: Int. J. Heat Mass Transf. 38, 3433 (1995)

    Article  Google Scholar 

  8. Beck J.V., Blackwell B., St Clair C.R. Jr.: Inverse Heat Conduction. Wiley, New York (1985)

    MATH  Google Scholar 

  9. Orlande M.N., Orlande H.R.B.: Inverse Heat Transfer: Fundamentals and Applications. Taylor & Francis, New York (2000)

    Google Scholar 

  10. Vakili S., Gadala M.S.: Numer. Heat Transf. Part B 56, 119 (2009)

    Article  ADS  Google Scholar 

  11. Tian N.: Numer. Heat Transf. Part B 60, 73 (2011)

    Article  ADS  Google Scholar 

  12. Raudensky M., Horsky J., Krejsa J.: Int. Commun. Heat Mass Transf. 22, 661 (1995)

    Article  Google Scholar 

  13. Krejsa J., Woodbury K.A., Ratliff J.D., Raudensky M.: Inverse Prob. Eng. 7, 197 (1999)

    Article  Google Scholar 

  14. Shiguemori E.H., Harter F.P., Campos Velho H.F., da Silva J.D.S.: Tend. Math. Apl. Comput. 3, 189 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Deng S., Hwang Y.: Int. J. Heat Mass Transf. 49, 4732 (2006)

    Article  MATH  Google Scholar 

  16. Shiguemori E.H., da Silva J.D.S., Velho H.F.D.: Inverse Prob. Sci. Eng. 12, 317 (2004)

    Article  Google Scholar 

  17. Sablani S.S., Kacimov A., Perret J., Mujumdar A.S., Campo A.: Int. J. Heat Mass Transf. 48, 665 (2005)

    Article  MATH  Google Scholar 

  18. Davis L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  19. Chiwiacowsky L.D., Campos Velho H.F.: Inverse Prob. Eng. 11, 471 (2003)

    Article  Google Scholar 

  20. Raudensky M., Woodbury K.A., Kral J., Brezina T.: Numer. Heat Transf. Part B 28, 293 (1995)

    Article  ADS  Google Scholar 

  21. K.A. Woodbury, in Proceedings of the 4th International Conference on Inverse Problems in Engineering, Angra dos Reis, Brazil, 2002

  22. Liu G.R., Lee J.H., Patera A.T., Yang Z.L., Lam K.Y.: Comput. Methods Appl. Mech. Eng. 194, 3090 (2005)

    Article  ADS  MATH  Google Scholar 

  23. Das R., Mishra S.C., Uppaluri R.: Int. J. Heat Mass Transf. 52, 2749 (2009)

    Article  MATH  Google Scholar 

  24. Das R., Mishra S.C., Uppaluri R.: Int. Commun. Heat Mass Transf. 37, 52 (2010)

    Article  Google Scholar 

  25. Liu F.B.: Int. J. Heat Mass Transf. 51, 3745 (2008)

    Article  MATH  Google Scholar 

  26. Raudensky M., Horsky J., Krejsa J., Slama L.: Int. J. Numer. Methods Heat Fluid Flow 6, 19 (1996)

    Article  MATH  Google Scholar 

  27. Garcia S., Guynn J., Scott E.P.: Numer. Heat Transf. Part A 33, 149 (1998)

    Article  ADS  Google Scholar 

  28. Imani A., Ranjbar A.A., Esmkhani M.: Inverse Prob. Sci. Eng. 14, 767 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ranjbar A., Famouri M., Imani A.: Int. J. Numer. Methods Heat Fluid Flow 20, 201 (2010)

    Article  Google Scholar 

  30. Guo Q., Shen D., Guo Y., Lai C.H.: Int. J. Comput. Math. 84, 241 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Phillips S.W., Aquino W., Chirdon W.M.: J. Eng. Mech. 133, 1341 (2007)

    Article  Google Scholar 

  32. Adili A., Hasni N., Kerkeni C., Ben Nashrallah S.: Int. J. Therm. Sci. 49, 889 (2010)

    Article  Google Scholar 

  33. Gorbatov V., Okulovskii Yu., Skripov P., Smotritskiy A., Starostin A.: J. Eng. Thermophys. 19, 144 (2010)

    Article  Google Scholar 

  34. B. Czél, Gy. Gróf, ICHMT Digital Library (2008). doi:10.1615/ICHMT.2008.CHT.1700

  35. Czél B., Gróf Gy.: Int. J. Thermophys. 30, 1975 (2009)

    Article  ADS  Google Scholar 

  36. B. Czél, Determination of the Thermal Conductivity and the Volumetric Heat Capacity by Genetic Algorithm, Ph.D. Thesis, Budapest University of Technology and Economics, Budapest, 2011 (in Hungarian)

  37. B. Czél, Gy. Gróf, Int. J. Heat Mass Transf. (2012). doi:10.1016/j.ijheatmasstransfer.2012.03.067

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Czél.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czél, B., Gróf, G. Simultaneous Identification of Temperature-Dependent Thermal Properties via Enhanced Genetic Algorithm. Int J Thermophys 33, 1023–1041 (2012). https://doi.org/10.1007/s10765-012-1226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1226-9

Keywords

Navigation