Skip to main content

Advertisement

Log in

Dietary Competition in an Extant Mammalian Guild: Application of a Quantitative Method to Evaluate Reconstructed Niche Overlap in Paleocommunities

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

The evaluation of competition, contingent on the identification of niche similarity, is a challenge in the fossil record. Specifically, a method for quantifying the degree of niche overlap is needed, as niches in paleocommunities can be reconstructed only using ecomorphological characters. In this study, I suggest the use of nonparametric multivariate pairwise comparisons for testing the presence or absence of niche overlap, wherein niches are defined as Hutchinsonian multidimensional hypervolumes. I applied this method to an extant mammalian guild, comprising primates and their dietary competitors, to determine the significance of dimensionality in niche construction and to examine the ability of molar morphology to capture dietary niche overlap. I conducted principal component analyses of eight molar measurements across all members of this guild, and dietary niches were defined by principal component scores. Niche overlap was assessed through the comparison of distances among individuals both within and between niches. To demonstrate the application of the proposed method, I compared dietary niches of 1) seven predefined dietary groups and 2) genera within and across dietary groups using multivariate pairwise comparisons. Results indicated that the typically unexplored higher principal components, or “niche axes,” may be integral to niche separation. As predicted, almost all niches of genera from different dietary groups did not overlap; however, niche overlap among genera within the same dietary category was less than expected. This highlights our need to investigate further the structure of niches within extant guilds to better inform our examination of competition in paleocommunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrams, P. (1986). Character displacement and niche shift analyzed using consumer-resource models of competition. Theoretical Population Biology, 29, 107–160.

    CAS  PubMed  Google Scholar 

  • Abrams, P. A. (1987). Alternative models of character displacement and niche shift. I. Adaptive shifts in resource use when there is competition for nutritionally nonsubstitutable resources. Evolution, 41, 651–661.

    Google Scholar 

  • Abrams, P. A. (1990). Ecological vs evolutionary consequences of competition. OIKOS, 57, 147–151.

    Google Scholar 

  • Abrams, P. A. (2000). Character shifts of prey species that share predators. The American Naturalist, 156, S45–S61.

    Google Scholar 

  • Altmann, S. A. (2009). Fallback foods, eclectic omnivores, and the packaging problem. American Journal of Physical Anthropology, 140, 615–629.

    PubMed  Google Scholar 

  • Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32–46.

    Google Scholar 

  • Arthur, W. (1982). The evolutionary consequences of interspecific competition. Advances in Ecological Research, 12, 127–187.

    Google Scholar 

  • Arthur, W. (1987). The niche in competition and evolution. New York: John Wiley & Sons.

    Google Scholar 

  • Beaudrot, L., Struebig, M. J., Meijaard, E., Van Balen, S., Husson, S., & Marshall, A. J. (2013a). Co-occurrence patterns of Bornean vertebrates suggest competitive exclusion is strongest among distantly related species. Oecologia, 173, 1053–1062.

    PubMed  Google Scholar 

  • Beaudrot, L., Struebig, M. J., Meijaard, E., Van Balen, S., Husson, S., Young, C. F., & Marshall, A. J. (2013b). Interspecific interactions between primates, birds, bats, and squirrels may affect community composition in Borneo. American Journal of Primatology, 75, 170–185.

    PubMed  Google Scholar 

  • Benton, M. J. (1983). Dinosaur success in the Triassic: A noncompetitive ecological model. The Quarterly Review of Biology, 58, 29–55.

    Google Scholar 

  • Benton, M. J. (1987). Progress and competition in macroevolution. Biological Reviews, 62, 303–338.

    Google Scholar 

  • Benton, M. J. (1990). Extinction, biotic replacements, and clade interactions. In E. C. Dudley (Ed.), The unity of evolutionary biology: Proceedings of th2e Fourth International Congress of Systematic and Evolutionary Biology (Vol. 1, pp. 89–102). Portland, OR: Dioscorides Press.

    Google Scholar 

  • Benton, M. J. (1996). On the nonprevalence of competitive replace in the evolution of tetrapods. In D. Jablonski, D. H. Erwin, & J. H. Lipps (Eds.), Evolutionary paleobiology (pp. 185–210). Chicago: The University of Chicago Press.

    Google Scholar 

  • Bininda-Emonds, O. R., Cardillo, M., Jones, K. E., MacPhee, R. D., Beck, R. M., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L., & Purvis, A. (2007). The delayed rise of present-day mammals. Nature, 446, 507–512.

    CAS  PubMed  Google Scholar 

  • Boyer, D. M. (2008). Relief index of second mandibular molars is a correlate of diet among prosimians primates and other euarchontan mammals. Journal of Human Evolution, 55, 1118–1137.

    PubMed  Google Scholar 

  • Boyer, D. M., Evans, A. R., & Jernvall, J. (2010). Evidence of dietary differentiation among late Paleocene-early Eocene plesiadapids (Mammalia, Primates). American Journal of Physical Anthropology, 142, 194–210.

    PubMed  Google Scholar 

  • Boyer, D. M., Lipman, Y., St Clair, E., Puente, J., Patel, B. A., Funkhouser, T., Jernvall, J., & Daubechies, I. (2011). Algorithms to automatically quantify the geometric similarity of anatomical surfaces. Proceedings of the National Academy of Sciences of the USA, 108, 18221–18226.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boyer, D. M., Scott, C. S., & Fox, R. C. (2012). New craniodental material of Pronothodectes gaoi Fox (Mammalia, “Plesiadapiformes”) and relationships among members of Plesiadapidae. American Journal of Physical Anthropology, 147, 511–550.

    PubMed  Google Scholar 

  • Brusatte, S. L., Benton, M. J., Ruta, M., & Lloyd, G. T. (2008). Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science, 321, 1485–1488.

    CAS  PubMed  Google Scholar 

  • Bunn, J. M., Boyer, D. M., Lipman, Y., St Clair, E. M., Jernvall, J., & Daubechies, I. (2011). Comparing Dirichlet normal surface energy of tooth crowns, a new technique of molar shape quantification for dietary inference, with previous methods in isolation and in combination. American Journal of Physical Anthropology, 145, 247–261.

    PubMed  Google Scholar 

  • Butler, R. J., Barrett, P. M., Nowbath, S., & Upchurch, P. (2009). Estimating the effects of sampling biases on pterosaur diversity patterns: Implications for hypotheses of bird/pterosaur competitive replacement. Paleobiology, 35, 432–446.

    Google Scholar 

  • Calede, J. J. M., Hopkins, S. S. B., & Davis, E. B. (2011). Turnover in burrowing rodents: the roles of competition and habitat change. Palaeogeography, Palaeoclimatology, Palaeocology, 311, 242–255.

    Google Scholar 

  • Cardillo, M., Gittleman, J. L., & Purvis, A. (2008). Global patterns in the phylogenetic structure of island mammal assemblages. Proceedings of the Royal Society of London B: Biological Sciences, 275, 1549–1556.

    Google Scholar 

  • Chase, J. M., & Myers, J. A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366, 2351–2363.

    PubMed Central  PubMed  Google Scholar 

  • Colwell, R. K., & Rangel, T. F. (2009). Hutchinson's duality: The once and future niche. Proceedings of the National Academy of Sciences of the USA, 106, S19651–S19658.

    Google Scholar 

  • Connell, J. H. (1980). Diversity and the coevolution of competitors, or the ghost of competition past. OIKOS, 35, 131–138.

    Google Scholar 

  • Connor, E. F., & Simberloff, D. (1979). The assembly of species communities: Chance or competition? Ecology, 60, 1132–1140.

    Google Scholar 

  • Cooper, N., Rodriguez, J., & Purvis, A. (2008). A common tendency for phylogenetic overdispersion in mammalian assemblages. Proceedings of the Royal Society of London B: Biological Sciences, 275, 2031–2037.

    Google Scholar 

  • Dewar, E. W. (2003). Functional diversity within the Littleton fauna (early Paleocene), Colorado: Evidence from body mass, tooth structure and tooth wear. Paleobios, 23, 1–19.

    Google Scholar 

  • Dunbar, R. I. M., & Dunbar, E. P. (1974). Ecological relations and niche separation between sympatric terrestrial primates in Ethiopia. Folia Primatologica, 21, 36–60.

    CAS  Google Scholar 

  • Elton, C. (1927). Animal ecology. London: Sidgwick and Jackson.

    Google Scholar 

  • Elton, C. (2004). Competition and the structure of ecological communities. In M. V. Lomolino, D. F. Sax, & J. H. Brown (Eds.), Foundations of biogeography: Commentaries (pp. 1041–1055). Chicago: The University of Chicago Press.

    Google Scholar 

  • Esselstyn, J. A., Maher, S. P., & Brown, R. M. (2011). Species interactions during diversification and community assembly in an island radiation of shrews. PLoS ONE, 6, e21885.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans, A. R. (2006). Quantifying relationships between form and function and the geometry of the wear process in bat molars. In T. H. Kunz (Ed.), Functional and evolutionary ecology of bats (pp. 93–109). New York: Oxford University Press.

    Google Scholar 

  • Evans, A. R. (2013). Shape descriptors as ecometrics in dental ecology. Hystrix, The Italian Journal of Mammalogy, 24, 133–140.

    Google Scholar 

  • Evans, A. R., & Sanson, G. D. (2003). The tooth of perfection: Functional and spatial constraints on mammalian tooth shape. Biological Journal of the Linnean Society, 78, 173–191.

    Google Scholar 

  • Evans, A. R., & Sanson, G. D. (2005). Correspondence between tooth shape and dietary biomechanical properties in insectivorous microchiropterans. Evolutionary Ecology Research, 7, 453–478.

    Google Scholar 

  • Evans, A. R., & Sanson, G. D. (2006). Spatial and functional modeling of carnivore and insectivore molariform teeth. Journal of Morphology, 267, 649–662.

    PubMed  Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125, 1–15.

    Google Scholar 

  • Fleagle, J. G., & Reed, K. E. (1996). Comparing primate communities: A multivariate approach. Journal of Human Evolution, 30, 489–510.

    Google Scholar 

  • Fleagle, J. G., & Reed, K. E. (1999). Phylogenetic and temporal perspectives on primate ecology. In J. G. Fleagle, C. H. Janson, & K. E. Reed (Eds.), Primate communities (pp. 92–115). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Freeman, P. W. (1995). Nectarivorous feeding mechanisms in bats. Biological Journal of the Linnean Society, 56, 439–463.

    Google Scholar 

  • Freeman, P. W. (1998). Form, function, and evolution in skulls and teeth of bats. In T. H. Kunz & P. A. Racey (Eds.), Bat biology and conservation (pp. 140–156). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Friscia, A. R., & Van Valkenburgh, B. (2010). Ecomorphology of North American Eocene carnivores: Evidence for competition between Carnivorans and Creodonts. In A. Goswami & A. Friscia (Eds.), Carnivoran evolution: New view on phylogeny, form, and function (pp. 311–341). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Ganzhorn, J. U. (1999). Body mass, competition and the structure of primate communities. In J. G. Fleagle, C. H. Janson, & K. E. Reed (Eds.), Primate communities (pp. 141–157). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Gilbert, C. C. (2005). Dietary ecospace and the diversity of euprimates during the early and middle Eocene. American Journal of Physical Anthropology, 126, 327–249.

    Google Scholar 

  • Godfrey, L. R., Winchester, J. M., King, S. J., Boyer, D. M., & Jernvall, J. (2012). Dental topography indicates ecological contraction of lemur communities. American Journal of Physical Anthropology, 148, 215–227.

    PubMed  Google Scholar 

  • Grant, P., & Schluter, D. (1984). Interspecific competition inferred from patterns of guild structure. In D. R. Strong Jr., D. Simberloff, L. G. Abele, & A. B. Thistle (Eds.), Ecological communities: Conceptual issues and the evidence (pp. 201–231). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Grinnell, J. (1917a). Field tests of theories concerning distribution control. The American Naturalist, 51, 115–128.

    Google Scholar 

  • Grinnell, J. (1917b). The niche-relationship of the California thrasher. Auk, 34, 427–433.

    Google Scholar 

  • Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). GEIGER: Investigating evolutionary radiations. Bioinformatics, 24, 129–131.

    CAS  PubMed  Google Scholar 

  • Hiiemae, K. M. (2000). Feeding in mammals. In K. Schwenk (Ed.), Feeding: Form, function, and evolution in tetrapod vertebrates (pp. 411–448). San Diego: Academic Press.

    Google Scholar 

  • Holt, R. D. (2009). Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proceedings of the National Academy of Sciences of the USA, 106, 19659–19665.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427.

    Google Scholar 

  • Hutchinson, G. E. (1959). Homage to Santa Rosalia, or why are there so many kinds of animals? The American Naturalist, 93, 145–159.

    Google Scholar 

  • Hutchinson, G. E. (1965). The ecological theater and the evolutionary play. New Haven, CT: Yale University Press.

    Google Scholar 

  • Hutchinson, G. E. (1978). An introduction to population biology. New Haven, CT: Yale University Press.

    Google Scholar 

  • Janis, C. M. (1989). A climatic explanation for patterns of evolutionary diversity in ungulate mammals. Palaeontology, 32, 463–481.

    Google Scholar 

  • Janis, C. M., Gordon, I. J., & Illius, A. W. (1994). Modelling equid/ruminant competition in the fossil record. Historical Biology, 8, 15–29.

    Google Scholar 

  • Jernvall, J., Hunter, J. P., & Fortelius, M. (2000). Trends in the evolution of molar crown types in ungulate mammals: Evidence from the northern hemisphere. In M. W. J. Ferguson (Ed.), Development, function, and evolution of teeth (pp. 269–281). New York: Cambridge University Press.

    Google Scholar 

  • Kamilar, J. M., & Beaudrot, L. (2013). Understanding primate communities: Recent developments and future directions. Evolutionary Anthropology, 22, 174–185.

    PubMed  Google Scholar 

  • Kamilar, J. M., Beaudrot, L., Reed, K. E. (2014). The influences of species richness and climate on the phylogenetic structure of African haplorhine and strepsirrhine primate communities. International Journal of Primatology, 35. doi:10.1007/s10764-014-9784-2.

  • Kamilar, J. M., & Cooper, N. (2013). Phylogenetic signal in primate behaviour, ecology and life history. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368, 20120341.

    PubMed Central  PubMed  Google Scholar 

  • Kamilar, J. M., & Guidi, L. M. (2010). The phylogenetic structure of primate communities: Variation within and across continents. Journal of Biogeography, 37, 801–813.

    Google Scholar 

  • Kamilar, J. M., & Ledogar, J. A. (2011). Species co-occurrence patterns and dietary resource competition in primates. American Journal of Physical Anthropology, 144, 131–139.

    PubMed  Google Scholar 

  • Karr, J. R., & James, F. C. (1975). Ecomorphological configurations and convergent evolution. In M. L. Cody & J. M. Diamond (Eds.), Ecology and evolution of communities (pp. 258–291). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Kay, R. F. (1975). The functional adaptation of primate molar teeth. American Journal of Physical Anthropology, 43, 195–216.

    CAS  PubMed  Google Scholar 

  • Kay, R. F., & Covert, H. H. (1984). Anatomy and behavior of extinct primates. In D. J. Chivers, B. A. Wood, & A. Bilsborough (Eds.), Food acquisition and processing in primates (pp. 467–508). New York: Plenum Press.

    Google Scholar 

  • Kay, R. F., & Hiiemae, K. M. (1974). Jaw movement and tooth use in recent and fossil primates. American Journal of Physical Anthropology, 40, 227–256.

    CAS  PubMed  Google Scholar 

  • Keddy, P. A. (2001). Competition (2nd ed.). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Kirk, E. C., & Simons, E. L. (2001). Diets of fossil primates from the Fayum Depression of Egypt: A quantitative analysis of molar shearing. Journal of Human Evolution, 40, 203–229.

    CAS  PubMed  Google Scholar 

  • Krause, D. W. (1986). Competitive exclusion and taxonomic displacement in the fossil record: The case of rodents and multituberculates in the fossil record. Contributions to Geology Special Paper, 3, 95–117.

    Google Scholar 

  • Lambert, J. E. (2002). Resource switching and species coexistence in guenons: A community analysis of dietary flexibility. In M. E. Glenn & M. Cords (Eds.), Guenons: Diversity and adaptation in African monkeys (pp. 309–319). New York: Kluwer Academic/Plenum Press.

    Google Scholar 

  • Ledogar, J. A., Winchester, J. M., St Clair, E. M., & Boyer, D. M. (2013). Diet and dental topography in pitheciine seed predators. American Journal of Physical Anthropology, 150, 107–121.

    PubMed  Google Scholar 

  • Losos, J. B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995–1007.

    PubMed  Google Scholar 

  • Lucas, P. W. (1979). The dental-dietary adaptations of mammals. Neues Jahrbuch für Geologie und Palaontologie, Monatshefte, 8, 486–512.

    Google Scholar 

  • Lucas, P. W. (2006). Dental functional morphology: How teeth work. New York: Cambridge University Press.

    Google Scholar 

  • Lucas, P. W., & Cortlett, R. T. (1992). Quantitative aspects of the relationship between dentitions and diets. In J. F. V. Vincent & P. J. Lillford (Eds.), Feeding and the texture of food (pp. 93–121). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Lucas, P. W., & Luke, D. A. (1984). Chewing it over: Basic principles of food breakdown. In D. J. Chivers, B. A. Wood, & A. Bilsborough (Eds.), Food acquisition and processing in primates (pp. 283–301). New York: Plenum Press.

    Google Scholar 

  • Lucas, P. W., & Peters, C. R. (2000). Function of postcanine tooth crown shape in mammals. In M. W. J. Ferguson (Ed.), Development, function and evolution of teeth (pp. 282–289). New York: Cambridge University Press.

    Google Scholar 

  • Luke, D. A., & Lucas, P. W. (1983). The significance of cusps. Journal of Oral Rehabilitation, 10, 197–206.

    CAS  PubMed  Google Scholar 

  • Maas, M. C., Krause, D. W., & Strait, S. G. (1988). The decline and extinction of Plesiadapiformes (Mammalia: ?Primates) in North America: Displacement or replacement? Paleobiology, 14, 410–431.

    Google Scholar 

  • Maier, W. (1984). Tooth morphology and dietary specialization. In D. J. Chivers, B. A. Wood, & A. Bilsborough (Eds.), Food acquisition and processing in primates (pp. 303–330). New York: Plenum Press.

    Google Scholar 

  • Manly, B. F. J. (1997). Randomization, bootstrap and Monte Carlo methods in biology (2nd ed.). New York: Chapman and Hall.

    Google Scholar 

  • Masters, J. C., & Rayner, R. J. (1993). Competition and macroevolution: The ghost of competition yet to come? Biological Journal of the Linnean Society, 49, 87–98.

    Google Scholar 

  • McGowan, A. J., & Dyke, G. J. (2007). A morphospace-based test for competitive exclusion among flying vertebrates: Did birds, bats and pterosaurs get in each other’s space? Journal of Evolutionary Biology, 20, 1230–1236.

    CAS  PubMed  Google Scholar 

  • McGraw, W. S. (1998). Comparative locomotion and habitat use of six monkeys in the Tai Forest, Ivory Coast. American Journal of Physical Anthropology, 105, 493–510.

  • McInerny, G. J., & Etienne, R. S. (2012). Stitch the niche: A practical philosophy and visual schematic for the niche concept. Journal of Biogeography, 39, 2103–2111.

  • Miljutin, A., & Lehtonen, J. T. (2008). Probability of competition between introduced and native rodents in Madagascar: An estimation based on morphological traits. Estonian Journal of Ecology, 57, 133–152.

    Google Scholar 

  • Monroe, M. J. (2012). Does competition drive character differences between species on a macroevolutionary scale? Journal of Evolutionary Biology, 25, 2341–2347.

    PubMed  Google Scholar 

  • Morlo, M. (1999). Niche structure and evolution in creodont (Mammalia) faunas of the European and North American Eocene. GEOBIOS, 32, 297–305.

    Google Scholar 

  • Nakagawa, S. (2004). A farewell to Bonferroni: The problems of low statistical power and publication bias. Behavioral Ecology, 15, 1044–1045.

    Google Scholar 

  • Nijman, V., & Nekaris, K. A. I. (2010). Checkerboard patterns, interspecific competition, and extinction: Lessons from distribution patterns of tarsiers (Tarsius) and slow lorises (Nycticebus) in insular southeast Asia. International Journal of Primatology, 31, 1147–1160.

    PubMed Central  PubMed  Google Scholar 

  • Northfield, T. D., & Ives, A. R. (2013). Coevolution and the effects of climate change on interacting species. PLoS ONE, 11, e1001685.

    CAS  Google Scholar 

  • Nosil, P., & Harmon, L. (2009). Niche dimensionality and ecological speciation. In R. K. Butlin, J. R. Bridle, & D. Schluter (Eds.), Speciation and patterns of diversity (pp. 127–154). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Nunn, C. L. (2011). The comparative approach in evolutionary anthropology and biology. Chicago: The University of Chicago Press.

    Google Scholar 

  • O’Leary, M. A. (1997). Dental evolution in the early Eocene Notharctinae (Primates, Adapiformes) from the Bighorn Basin, Wyoming: documentation of gradualevolution in the oldest true primates. Ph.D. dissertation, Johns Hopkins University.

  • Perneger, T. V. (1998). What’s wrong with Bonferroni adjustments. British Medical Journal, 316, 1236.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pianka, E. R. (2004). Latitudinal gradients in species diversity: A review of concepts. In M. V. Lomolino, D. F. Sax, & J. H. Brown (Eds.), Foundations of biogeography: Commentaries (pp. 1203–1216). Chicago: The University of Chicago Press.

    Google Scholar 

  • Porter, J. H., & Dueser, R. D. (1982). Niche overlap and competition in an insular small mammal fauna: a test of the niche overlap hypothesis. OIKOS, 39, 228–236.

    Google Scholar 

  • Prevosti, F. J., Forasiepi, A., & Zimicz, N. (2013). The evolution of the Cenozoic terrestrial mammalian predator guild in South America: Competition or replacement? Journal of Mammalian Evolution, 20, 3–21.

    Google Scholar 

  • R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Ramadarshan, A., Alloing-Seguier, T., Merceron, G., & Marivaux, L. (2011). The primate community of Cachoeira (Brazilian Amazonia): A model to decipher ecological partitioning among extinct species. PLOS ONE, 6, e27392.

    Google Scholar 

  • Rensberger, J. M. (1986). The transition from insectivory to herbivory in mammalian teeth. Memoires du Museum National D’Histoire Naturelle, Paris (Serie C), 53, 351–365.

    Google Scholar 

  • Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223.

    Google Scholar 

  • Ricklefs, R. E. (2010). Evolutionary diversification, coevolution between populations and their antagonists, and the filling of niche space. Proceedings of the National Academy of Sciences of the USA, 107, 1265–1272.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson, J. G., & Redford, K. H. (1986). Body size, diet, and population density of Neotropical forest mammals. The American Naturalist, 128, 665–680.

    Google Scholar 

  • Rosenzweig, M. L. (1995). Species diversity in space and time. Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Roughgarden, J. (1983). Competition and theory in community ecology. The American Naturalist, 122, 583–601.

    Google Scholar 

  • Roughgarden, J. (1986). A comparison of food-limited and space-limited animal competition communities. In J. Diamond & T. J. Case (Eds.), Community ecology (pp. 492–516). New York: Harper & Row.

    Google Scholar 

  • Roughgarden, J., & Diamond, J. (1986). Overview: The role of species interactions in community ecology. In J. Diamond & T. J. Case (Eds.), Community ecology (pp. 333–343). New York: Harper and Row.

    Google Scholar 

  • Schemske, D. W. (2009). Biotic interactions and speciation in the tropics. In R. K. Butlin, J. R. Bridle, & D. Schluter (Eds.), Speciation and patterns of diversity (pp. 219–239). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Schluter, D. (1994). Experimental evidence that competition promotes divergence in adaptive radiation. Science, 266, 798–801.

    CAS  PubMed  Google Scholar 

  • Schluter, D. (2000). Ecological character displacement in adaptive radiation. The American Naturalist, 156, S4–S16.

    Google Scholar 

  • Schluter, D., & McPhail, J. D. (1993). Character displacement and replicate adaptive radiation. Trends in Ecology and Evolution, 8, 197–200.

    CAS  PubMed  Google Scholar 

  • Schoener, T. W. (1988). Ecological interactions. In A. A. Meyers & P. S. Giller (Eds.), Analytical biogeography: An integrated approach to the study of animal and plant distributions (pp. 255–297). London: Chapman and Hall.

    Google Scholar 

  • Schreier, B. M., Harcourt, A. H., Coppeto, S. A., & Somi, M. F. (2009). Interspecific competition and niche separation in primates: A global analysis. Biotropica, 41, 283–291.

    Google Scholar 

  • Schweiger, O., Settele, J., Kudrna, O., Klotz, S., & Kuhn, I. (2008). Climate change can cause spatial mismatch of trophically interacting species. Ecology, 89, 3472–3479.

    PubMed  Google Scholar 

  • Seligsohn, D. (1977). Analysis of species-specific molar adaptation in strepsirhine primates. In F. S. Szalay (Ed.), Contributions to Primatology (Vol. 11, pp. 1–116). Basel: S. Karger AG.

    Google Scholar 

  • Sepkoski, J. J., Jr. (1996). Competition in macroevolution: The double wedge revisited. In D. Jablonski, D. H. Erwin, & J. H. Lipps (Eds.), Evolutionary paleobiology (pp. 211–255). Chicago: The University of Chicago Press.

    Google Scholar 

  • Shanahan, M., & Compton, S. G. (2001). Vertical stratification of figs and fig-eaters in a Bornean lowland rain forest: How is the canopy different? Plant Ecology, 153, 121–132.

    Google Scholar 

  • Simberloff, D., & Dayan, T. (1991). The guild concept and the structure of ecological communities. Annual Review of Ecological Systems, 22, 115–143.

    Google Scholar 

  • Smith, R. J. (2005). Relative size versus controlling for size: interpretation of ratios in research on sexual dimorphism in the human corpus collosum. Current Anthropology, 46, 249–273.

  • Smythe, N. (1986). Competition and resource partitioning in the guild of Neotropical terrestrial frugivorous mammals. Annual Review of Ecological Systems, 17, 169–188.

    Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research (3rd ed.). New York: W. H. Freeman.

    Google Scholar 

  • Strait, S. G. (1993a). Differences in occlusal morphology and molar size between frugivores and faunivores. Journal of Human Evolution, 25, 471–484.

    Google Scholar 

  • Strait, S. G. (1993b). Molar morphology and food texture among small-bodied faunivorous mammals. Journal of Mammalogy, 74, 391–402.

    Google Scholar 

  • Strait, S. G. (1997). Tooth use and the physical properties of food. Evolutionary Anthropology, 5, 199–211.

    Google Scholar 

  • Strait, S. G. (2001). Dietary reconstruction of small-bodied omomyid primates. Journal of Vertebrate Paleontology, 21, 322–334.

    Google Scholar 

  • Strait, S. G., & Vincent, J. F. V. (1998). Primate faunivores: Physical properties of prey items. International Journal of Primatology, 19, 867–878.

    Google Scholar 

  • Stroik, L. K. (2014). The dietary competitive environment of the origination and early diversification of euprimates in North America. Ph.D. dissertation, Arizona State University.

  • Sushma, H. S., & Singh, M. (2006). Resource partitioning and interspecific interactions among sympatric rain forest arboreal mammals of the Western Ghats, India. Behavioral Ecology, 17, 479–490.

    Google Scholar 

  • Terborgh, J. (1983). Five New World primates: A study in comparative ecology. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Tilman, D. (1982). Resource competition and community structure. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Tokeshi, M. (1997). Species coexistence and abundance: Patterns and processes. In T. Abe, S. A. Levin, & M. Higashi (Eds.), Biodiversity: An ecological perspective (pp. 35–55). New York: Springer.

    Google Scholar 

  • Tokeshi, M. (1999). Species coexistence: Ecological and evolutionary perspectives. Oxford: Blackwell Science.

    Google Scholar 

  • Ungar, P. (2002). Reconstructing the diets of fossil primates. In J. M. Plavcan, R. F. Kay, W. L. Jungers, & C. P. van Schaik (Eds.), Reconstructing behavior in the primate fossil record (pp. 261–296). New York: Kluwer Academic/Plenum Press.

    Google Scholar 

  • Ungar, P. S. (2004). Dental topography and diets of Australopithecus afarensis and early Homo. Journal of Human Evolution, 46, 605–622.

    PubMed  Google Scholar 

  • Ungar, P. S. (2007). Dental topography and human evolution with comments on the diets of Australopithecus africanus and Paranthropus. In S. E. Bailey & J.-J. Hublin (Eds.), Dental perspectives on human evolution (pp. 321–343). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Ungar, P. S. (2009). Tooth form and function: Insights into adaptation through the analysis of dental microwear. Frontiers of Oral Biology, 13, 38–43.

    PubMed  Google Scholar 

  • Van Valen, L. M. (1980). Evolution as a zero-sum game for energy. Evolutionary Theory, 4, 289–300.

    Google Scholar 

  • Van Valen, L., & Sloan, R. E. (1966). The extinction of the multituberculates. Systematic Zoology, 15, 261–278.

    Google Scholar 

  • Van Valkenburgh, B. (1994). Extinction and replacement among predatory mammals in the North American late Eocene and Oligocene: Tracking a paleoguild over twelve million years. Historical Biology, 8, 129–150.

    Google Scholar 

  • Van Valkenburgh, B. (1999). Major patterns in the history of carnivorous mammals. Annual Review of Earth and Planetary Sciences, 27, 463–493.

    Google Scholar 

  • Vermeij, G. J. (1994). The evolutionary interaction among species: Selection, escalation, and coevolution. Annual Review of Ecological Systems, 25, 219–236.

    Google Scholar 

  • White, J. (2009). Geometric morphometric investigation of molar shape diversity in modern lemurs and lorises. The Anatomical Record, 292, 701–719.

    PubMed  Google Scholar 

  • Wiens, J. J. (2011). The niche, biogeography and species interactions. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366, 2336–2350.

    PubMed Central  PubMed  Google Scholar 

  • Winchester, J. M., Boyer, D. M., St Clair, E. M., Gosselin-Ildari, A. D., Cooke, S. B., & Ledogar, J. A. (2014). Dental topography of platyrrhines and prosimians: Convergence and contrasts. American Journal of Physical Anthropology, 153, 29–44.

    PubMed  Google Scholar 

Download references

Acknowledgments

First and foremost, I want to thank the guest editors for their invitation to contribute to this special issue on primate communities as well as their assistance in manuscript preparation. I thank Gary Schwartz and Kaye Reed for guidance and support in the development of this project; Christopher Campisano and Gregg Gunnell for the construction and refinement of project ideas; Emily Barton, Shelly Bruno, Megan Best, Jennifer Burgdorf, Lexus Demetres, Austin Doll, Lawrence Fatica, and Madeline Moore for assistance with specimen preparation and dietary data collection; Marian Dagosto for the loan of equipment necessary to initiate this study; Mark Hafner for permission to use the collection at the Louisiana State University Museum of Natural Science; Natarajan Raghunand and Gerald Guntle at the University of Arizona Cancer Center for assistance with image acquisition; and Gary Schwartz, Kaye Reed, Kristi Lewton, and three anonymous reviewers, who provided invaluable comments and suggestions that greatly enhanced the quality of this manuscript. This work was supported in part by a National Science Foundation Doctoral Dissertation Improvement Grant (NSF-BCS 1155997), Sigma Xi, and the Graduate and Professional Student Association and School of Human Evolution and Social Change at Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura K. Stroik.

Supporting Information

Definitions of landmarks used to calculate morphological molar measures (Appendix S1) and references used in dietary classifications for the Balta, Peru sample (Appendix S2) are available online.

ESM 1

(DOCX 27.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stroik, L.K. Dietary Competition in an Extant Mammalian Guild: Application of a Quantitative Method to Evaluate Reconstructed Niche Overlap in Paleocommunities. Int J Primatol 35, 1222–1252 (2014). https://doi.org/10.1007/s10764-014-9793-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-014-9793-1

Keywords

Navigation