Skip to main content
Log in

Prolactin Receptor Gene Diversity in Azara’s Owl Monkeys (Aotus azarai) and Humans (Homo sapiens) Suggests a Non-Neutral Evolutionary History among Primates

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Although paternal care is rare in mammals, males of several primate taxa exhibit high degrees of this behavior. Studies a number of vertebrate species found a positive correlation between prolactin (PRL) levels and paternal care. Studies of maternal care in knockout mice also indicate that the prolactin receptor (PRLR) plays a critical role in the neural regulation of parental care. To better understand the extent of PRLR genetic variation within primates, we characterized intraspecific coding variation in Azara’s owl monkeys (Aotus azarai) from northern Argentina, a species with intensive paternal care. We then examined PRLR variation in 1088 humans (Homo sapiens) from the 1000 Genomes Project. Lastly, we assessed interspecific variation in PRLR in 4 different Aotus spp. and 12 phylogenetically (and behaviorally) disparate primate taxa. Our analyses revealed that the coding region of PRLR exhibits significant variation in all species of primates, with nonsynonymous amino acid substitutions being enriched in the intracellular domain, a region responsible for activation of downstream targets in the PRL pathway. In addition, several species exhibit entire codon deletions in this region. These results suggest a non-neutral evolutionary history of the PRLR locus within different primate lineages, and further imply that the translated PRLR protein has undergone considerable change throughout primate evolution. Such changes may be driven by selection for different behaviors and physiologies resulting from modulations of the pleiotropic prolactin pathway. Yet, the genetic variants in PRLR among primate taxa do not discretely cluster with species-level differences in paternal care behaviors. These observations imply that other mechanisms must be involved in the regulation of paternal care in primates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • 1000 Genomes Project Consortium. (2010). A map of human genome variation from population-scale sequencing. Nature, 467(7319), 1061–1073.

    Article  Google Scholar 

  • 1000 Genomes Project Consortium. (2012). An integrated map of genetic variation from 1092 human genomes. Nature, 491(7422), 56–65.

    Article  Google Scholar 

  • Almond, R. E., Brown, G. R., & Keverne, E. B. (2006). Suppression of prolactin does not reduce infant care by parentally experienced male common marmosets (Callithrix jacchus). Hormones and Behavior, 49(5), 673–680.

    Article  CAS  PubMed  Google Scholar 

  • Altekar, G., Dwarkadas, S., Huelsenbeck, J. P., & Ronquist, F. (2004). Parallel metropolis coupled Markov Chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics, 20(3), 407–415.

    Article  CAS  PubMed  Google Scholar 

  • Babb, P. L., Fernandez-Duque, E., & Schurr, T. G. (2010). AVPR1A sequence variation in monogamous owl monkeys (Aotus azarai) and its implications for the evolution of platyrrhine social behavior. Journal of Molecular Evolution, 71(4), 279–297.

    Article  CAS  PubMed  Google Scholar 

  • Babb, P. L., Fernandez-Duque, E., Baiduc, C. A., Gagneux, P., Evans, S., & Schurr, T. G. (2011). mtDNA diversity in Azara’s owl monkeys (Aotus azarai azarai) of the Argentinean Chaco. American Journal of Physical Anthropology, 146(2), 209–224.

    Article  PubMed  Google Scholar 

  • Bandelt, H. J., & Parson, W. (2008). Consistent treatment of length variants in the human mtDNA control region, a reappraisal. International Journal of Legal Medicine, 122(1), 11–21.

    Article  PubMed  Google Scholar 

  • Bandelt, H. J., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1), 37–48.

    Article  CAS  PubMed  Google Scholar 

  • Beard, K. C., & Wang, J. (2004). The eosimiid primates (Anthropoidea) of the Heti Formation, Yuanqu Basin, Shanxi and Henan Provinces, People’s Republic of China. Journal of Human Evolution, 46(4), 401–432.

    Article  PubMed  Google Scholar 

  • Ben-Jonathan, N., LaPensee, C. R., & LaPensee, E. W. (2008). What can we learn from rodents about prolactin in humans? Endocrine Reviews, 29(1), 1–41.

    Article  CAS  PubMed  Google Scholar 

  • Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G., et al. (2008). Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456(7218), 53–59.

    Google Scholar 

  • Bole-Feysot, C., Goffin, V., Edery, M., Binart, N., & Kelly, P. A. (1998). Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocrine Reviews, 19(3), 225–268.

    Article  CAS  PubMed  Google Scholar 

  • Briggs, A. W., Stenzel, U., Johnson, P. L., Green, R. E., Kelso, J., Prüfer, K., et al. (2007). Patterns of damage in genomic DNA sequences from a Neandertal. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14616–14621.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks, P. L., Vella, E. T., & Wynne-Edwards, K. E. (2005). Dopamine agonist treatment before and after the birth reduces prolactin concentration but does not impair paternal responsiveness in Djungarian hamsters Phodopus campbelli. Hormones and Behavior, 47(3), 358–366.

    Article  CAS  PubMed  Google Scholar 

  • Burley, N. T., & Johnson, K. (2002). The evolution of avian parental care. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357(1419), 241–250.

    Article  PubMed  Google Scholar 

  • Chen, F. C., & Li, W. H. (2001). Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. American Journal of Human Genetics, 68(2), 444–456.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clutton-Brock, T. H. (1991). The evolution of parental care. Princeton: Princeton University Press.

    Google Scholar 

  • Dalrymple, A., Edery, M., & Jabbour, H. N. (2000). Sequence and functional characterisation of the marmoset monkey (Callithrix jacchus) prolactin receptor: comparative homology with the human long-form prolactin receptor. Molecular and Cellular Endocrinology, 167(1–2), 89–97.

    Article  CAS  PubMed  Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772.

    Article  CAS  PubMed  Google Scholar 

  • Dixson, A. F., & George, L. (1982). Prolactin and parental behaviour in a male New World primate. Nature, 299, 551–553.

    Article  CAS  PubMed  Google Scholar 

  • Don, R. H., Cox, P. T., Wainwright, B. J., Baker, K., & Mattick, J. S. (1991). Touchdown PCR to circumvent spurious priming during gene amplification. Nucleic Acids Research, 19(14), 4008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.

    Article  PubMed Central  PubMed  Google Scholar 

  • Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5), e88.

    Article  PubMed Central  PubMed  Google Scholar 

  • Drummond, A. J., Ashton, B., Cheung, M., Heled, J., Kearse, M., Moir, R., Stones-Havas, S., Thierer, T., Wilson, A. (2010). Geneious v5.0. Available at: http://www.geneious.com.

  • Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567.

  • Felsenstein, J. (2005). PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Seattle: Department of Genome Sciences, University of Washington.

    Google Scholar 

  • Fernandez-Duque, E. (2012). Owl monkeys Aotus spp in the wild and in captivity. International Zoo Yearbook, 46(1), 89–94.

    Article  Google Scholar 

  • Fernandez-Duque, E., & Huck, M. (2013). Till death (or an intruder) do us part: intrasexual- competition in a monogamous primate. PLoS One, 8(1), e53724.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez-Duque, E., Rotundo, M., & Sloan, C. (2001). Density and population structure of owl monkeys (Aotus azarai) in the Argentinean Chaco. American Journal of Primatology, 53(3), 99–108.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Duque, E., Juárez, C. P., & Di Fiore, A. (2008). Adult male replacement and subsequent infant care by male and siblings in socially monogamous owl monkeys (Aotus azarai). Primates, 49, 81–84.

    Article  PubMed  Google Scholar 

  • Fernandez-Duque, E., Valeggia, C., & Mendoza, S. P. (2009). The biology of paternal care in human and nonhuman primates. Annual Review of Anthropology, 38, 115–130.

    Google Scholar 

  • Flicek, P., Amode, M. R., Barrell, D., Beal, K., Brent, S., Chen, Y., et al. (2011). Ensembl 2011. Nucleic Acids Research, 39, D800–D806.

  • Goffin, V., Binart, N., Touraine, P., & Kelly, P. A. (2002). Prolactin: the new biology of an old hormone. Annual Review of Physiology, 64, 47–67.

    Article  CAS  PubMed  Google Scholar 

  • Gordon, I., Zagoory-Sharon, O., Leckman, J. F., & Feldman, R. (2010). Prolactin, oxytocin, and the development of paternal behavior across the first six months of fatherhood. Hormones and Behavior, 58(3), 513–518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Green, R. E., Krause, J., Ptak, S. E., Briggs, A. W., Ronan, M. T., Simons, J. F., et al. (2006). Analysis of one million base pairs of Neanderthal DNA. Nature, 444(7117), 330–336.

    Article  CAS  PubMed  Google Scholar 

  • Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., et al. (2010). A draft sequence of the Neandertal Genome. Science, 328(5979), 710–722.

    Article  CAS  PubMed  Google Scholar 

  • Gubernick, D. J., & Nelson, R. J. (1989). Prolactin and paternal behavior in the biparental California mouse, Peromyscus californicus. Hormones and Behavior, 23(2), 203–210.

    Article  CAS  PubMed  Google Scholar 

  • Gubernick, D. J., & Teferi, T. (2000). Adaptive significance of male parental care in a monogamous mammal. Proceedings of the Royal Society B: Biological Sciences, 267(1439), 147–150.

    Article  CAS  PubMed  Google Scholar 

  • Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate method to estimate large phylogenies by maximum-likelihood. Systems Biology, 52(5), 696–704.

    Article  Google Scholar 

  • Hartwig, W. C., & Meldrum, D. J. (2002). Miocene platyrrhines of the northern Neotropics. In W. C. Hartwig (Ed.), The primate fossil record (pp. 175–188). Cambridge: Cambridge University Press.

    Google Scholar 

  • He, X., & Zhang, J. (2006). Toward a molecular understanding of pleiotropy. Genetics, 173(4), 1885–1891.

    Article  CAS  PubMed  Google Scholar 

  • Henikoff, S., & Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences of the United States of America, 89(22), 10915–10919.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hodgson, J. A., Sterner, K. N., Matthews, L. J., Burrell, A. S., Jani, R. A., Raaum, R. L., et al. (2009). Successive radiations, not stasis, in the South American primate fauna. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5534–5539.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horseman, N. D., Zhao, W., Montecino-Rodriguez, E., Tanaka, M., Nakashima, K., Engle, S. J., et al. (1997). Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO Journal, 16(23), 6926–6935.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Z. Z., Zhuang, L., Meng, J., Tsai-Morris, C. H., & Dufau, M. L. (2002). Complex 5′ genomic structure of the human prolactin receptor: multiple alternative exons 1 and promoter utilization. Endocrinology, 143(6), 2139–2142.

    CAS  PubMed  Google Scholar 

  • Huck, M., & Fernandez-Duque, E. (2012). Children of divorce: effects of adult replacements on previous offspring in Argentinean owl monkeys. Behavioral Ecology and Sociobiology, 66(3), 505–517.

    Article  Google Scholar 

  • Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754–755.

    Article  CAS  PubMed  Google Scholar 

  • Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y., et al. (2004). Detection of large-scale variation in the human genome. Nature Genetics, 36(9), 949–951.

    Article  CAS  PubMed  Google Scholar 

  • Karolchik, D., Kuhn, R. M., Baertsch, R., Barber, G. P., Clawson, H., Diekhans, M., et al. (2008). The UCSC genome browser database: 2008 update. Nucleic Acids Research, 36, 773–779.

    Article  Google Scholar 

  • Keinan, A., & Clark, A. (2012). Recent explosive human population growth has resulted in an excess of rare genetic variants. Science, 336(6082), 740–743.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., et al. (2002). The human genome browser at UCSC. Genome Research, 12(6), 996–1006.

    Article  CAS  PubMed  Google Scholar 

  • Khong, H. K., Kuah, M. K., Jaya-Ram, A., & Shu-Chien, A. C. (2009). Prolactin receptor mRNA is upregulated in discus fish (Symphysodon aequifasciata) skin during parental phase. Comparative Biochemistry and Physiology - Part B, 153(1), 18–28.

    Article  Google Scholar 

  • Kimura, M. (1981). Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences of the United States of America, 78(1), 454–458.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korbie, D. J., & Mattick, J. S. (2008). Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nature Protocols, 3(9), 1452–1456.

    Article  CAS  PubMed  Google Scholar 

  • Lebrun, J. J., Ali, S., Goffin, V., Ullrich, A., & Kelly, P. A. (1995a). A single tyrosine residue of the prolactin receptor is responsible for activation of gene transcription. Proceedings of the National Academy of Sciences of the United States of America, 92, 4031–4035.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lebrun, J. J., Ali, S., Ullrich, A., & Kelly, P. A. (1995b). Proline-rich sequence mediated Jak2 association to the prolactin receptor is required but not sufficient for signal transduction. Journal of Biological Chemistry, 270, 10664–10670.

    Article  CAS  PubMed  Google Scholar 

  • Lucas, B. K., Ormandy, C. J., Binart, N., Bridges, R. S., & Kelly, P. A. (1998). Null mutation of the prolactin receptor gene produces a defect in maternal behavior. Endocrinology, 139(10), 4102–4107.

    Article  CAS  PubMed  Google Scholar 

  • Ma, E., Lau, J., Grattan, D. R., Lovejoy, D. A., & Wynne-Edwards, K. E. (2005). Male and female prolactin receptor mRNA expression in the brain of a biparental and a uniparental hamster, Phodopus, before and after the birth of a litter. Journal of Neuroendocrinology, 17(2), 81–90.

    Article  CAS  PubMed  Google Scholar 

  • Maynard-Smith, J. (1977). Parental investment: a prospective analysis. Animal Behaviour, 25(1), 1–9.

    Article  Google Scholar 

  • Miller, E. R., & Simons, E. L. (1997). Dentition of Proteopithecus sylviae, an archaic anthropoid from the Fayum, Egypt. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13760–13764.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mills, R. E., Luttig, C. T., Larkins, C. E., Beauchamp, A., Tsul, C., Pittard, W. S., et al. (2006). An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Research, 16(9), 1182–1890.

    Article  CAS  PubMed  Google Scholar 

  • Mota, M. T., & de Sousa, M. B. (2000). Prolactin levels of fathers and helpers related to alloparental care in common marmosets, Callithrix jacchus. Folia Primatologica, 71, 22–26.

    Article  CAS  Google Scholar 

  • Mota, M. T., Franci, C. R., & de Sousa, M. B. C. (2006). Hormonal changes related to paternal and alloparental care in common marmosets (Callithrix jacchus). Hormones and Behavior, 49(3), 293–302.

    Article  CAS  Google Scholar 

  • Neuman, M., & Insel, R. (2003). The neurobiology of parental behaviour. New York: Springer Science+Business Media.

    Google Scholar 

  • Noonan, J. P. (2010). Neanderthal genomics and the evolution of modern humans. Genome Research, 20(5), 547–553.

    Article  CAS  PubMed  Google Scholar 

  • Noonan, J. P., Coop, G., Kudaravalli, S., Smith, D., Krause, J., Alessi, J., et al. (2006). Sequencing and analysis of Neanderthal genomic DNA. Science, 314(5802), 1113–1118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ormandy, C. J., Camus, A., Barra, J., Damotte, D., Lucas, B., Buteau, H., et al. (1997). Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes and Development, 11(2), 167–178.

    Article  CAS  PubMed  Google Scholar 

  • Paradis, E. (2010). pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics, 26, 419–420.

    Article  CAS  PubMed  Google Scholar 

  • Perelman, P., Johnson, W. E., Roos, C., Seuánez, H. N., Horvath, J. E., Moreira, M. A. M., et al. (2011). A molecular phylogeny of living primates. PLoS Genetics, 7(3), e1001342.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perrot-Applanat, M., Gualillo, O., Pezet, A., Vincent, V., Edery, M., & Kelly, P. A. (1997). Dominant negative and cooperative effects of mutant forms of prolactin receptor. Molecular Endocrinology, 11(8), 1020–1032.

    Article  CAS  PubMed  Google Scholar 

  • Pezet, A., Buteau, H., Kelly, P. A., & Edery, M. (1997a). The last proline of Box 1 is essential for association with JAK2 and functional activation of the prolactin receptor. Molecular and Cellular Endocrinology, 129(2), 199–208.

    Article  CAS  PubMed  Google Scholar 

  • Pezet, A., Ferrag, F., Kelly, P. A., & Edery, M. (1997b). Tyrosine docking sites of the rat prolactin receptor required for association and activation of stat5. Journal of Biological Chemistry, 272(40), 25043–25050.

    Article  CAS  PubMed  Google Scholar 

  • Qazi, A. M., Tsai-Morris, C. H., & Dufau, M. L. (2006). Ligand-independent homo- and heterodimerization of human prolactin receptor variants: inhibitory action of the short forms by heterodimerization. Molecular Endocrinology, 20(8), 1912–1923.

    Article  CAS  PubMed  Google Scholar 

  • R Core Team. (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/.

  • Rambaut, A., & Drummond, A. J. (2007). Tracer v1.5. Available at: http://beast.bio.ed.ac.uk/Tracer.

  • Reburn, C. J., & Wynne-Edwards, K. E. (1999). Hormonal changes in males of a naturally biparental and a uniparental mammal. Hormones and Behavior, 35(2), 163–176.

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Garcia, P. P., Germain, A., Torres-Farfan, C. L., Richter, H. G., Campino, C., Seron-Ferre, M. J. (2003). Expression of prolactin (PRL) receptor in ovary of capuchin monkey. Initial studies. Submitted to EMBL/GenBank/DDBJ databases, accession number: AY227708.

  • Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  • Rotundo, M., Fernandez-Duque, E., & Dixson, A. (2005). Infant development and parental care in free-ranging Aotus azarai azarai in Argentina. International Journal of Primatology, 26(6), 1459–1473.

    Article  Google Scholar 

  • Rozakis-Adcock, M., & Kelly, P. A. (1991). Mutational analysis of the ligand-binding domain of the prolactin receptor. Journal of Biological Chemistry, 266(25), 16472–16477.

    CAS  PubMed  Google Scholar 

  • Rozakis-Adcock, M., & Kelly, P. A. (1992). Identification of ligand-binding determinants of the prolactin receptor. Journal of Biological Chemistry, 267(11), 7428–7433.

    CAS  PubMed  Google Scholar 

  • Rozen, S., & Skaletsky, H. J. (2000). Primer3 on the WWW for general users and for biologist programmers. In S. Krawetz & S. Misener (Eds.), Methods in molecular biology (pp. 365–386). Totowa: Humana Press.

    Google Scholar 

  • Schradin, C. (2008). Differences in prolactin levels between three alternative male reproductive tactics in striped mice (Rhabdomys pumilio). Proceedings of the Royal Society B: Biological Sciences, 275(1638), 1047–1052.

    Article  CAS  PubMed  Google Scholar 

  • Schradin, C., & Anzenberger, G. (1999). Prolactin, the hormone of paternity. News in Physiological Sciences, 14, 223–231.

    CAS  PubMed  Google Scholar 

  • Schradin, C., & Pillay, N. (2004). Prolactin levels in paternal striped mouse (Rhabdomys pumilio) fathers. Physiology and Behavior, 81(1), 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Schradin, C., Reeder, D. M., Mendoza, S. P., & Anzenberger, G. (2003). Prolactin and paternal care: comparison of three species of monogamous new world monkeys (Callicebus cupreus, Callithrix jacchus, and Callimico goeldii). Journal of Comparative Psychology, 117(2), 166–175.

    Article  PubMed  Google Scholar 

  • Serre, D., Langaney, A., Chech, M., Teschler-Nicola, M., Paunovic, M., Mennecier, P., et al. (2004). No evidence of Neandertal mtDNA contribution to early modern humans. PLoS Biology, 2(3), e57.

    Article  PubMed Central  PubMed  Google Scholar 

  • Setoguchi, T., & Rosenberger, A. L. (1987). A fossil owl monkey from La Venta, Colombia. Nature, 326(6114), 692–694.

    Article  CAS  PubMed  Google Scholar 

  • Simons, E. L., Rasmussen, D. T., & Gebo, D. L. (1987). A new species of Propliopithecus from the Fayum, Egypt. American Journal of Physical Anthropology, 73(2), 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Smuts, B. B., & Gubernick, D. J. (1992). Male-infant relationships in nonhuman primates: Paternal investment or mating effort? In B. S. Hewlett (Ed.), Father-child relations: Cultural and biosocial contexts (pp. 1–30). New York: Aldine de Gruyter.

    Google Scholar 

  • Somers, W., Ultsch, M., De Vos, A. M., & Kossiakoff, A. A. (1994). The x-ray structure of a growth-hormone prolactin receptor complex. Nature, 372(6505), 478–481.

    Article  CAS  PubMed  Google Scholar 

  • Storey, A. E., Walsh, C. J., Quinton, R. L., & Wynne-Edwards, K. E. (2000). Hormonal correlates of paternal responsiveness in new and expectant fathers. Evolution and Human Behavior, 21(2), 79–95.

    Article  PubMed  Google Scholar 

  • Swofford, D. L. (2002). PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0b10 beta. Sunderland: Sinauer Associates.

    Google Scholar 

  • Tajima, F. (1989a). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585–595.

    CAS  PubMed  Google Scholar 

  • Tajima, F. (1989b). The effect of change in population size on DNA polymorphism. Genetics, 123(3), 597–601.

    CAS  PubMed  Google Scholar 

  • Takai, M., Anaya, F., Shigehara, N., & Steoguchi, T. (2000). New fossil materials of the earliest New World monkey, Branisella boliviana, and the problem of platyrrhine origins. American Journal of Physical Anthropology, 111(2), 263–281.

    Article  CAS  PubMed  Google Scholar 

  • Tejedor, M. F., Tauber, A. A., Rosenberger, A. L., Swisher, C. C., 3rd, & Palacios, M. E. (2006). New primate genus from the Miocene of Argentina. Proceedings of the National Academy of Sciences of the United States of America, 103(14), 5437–5441.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • The Chimpanzee Sequencing and Analysis Consortium (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437, 69–87.

    Google Scholar 

  • Wang, J., Wang, W., Li, R., Li, Y., Tian, G., Goodman, L., et al. (2008). The diploid genome sequence of an Asian individual. Nature, 456(7218), 60–65.

    Google Scholar 

  • Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., et al. (2008). The complete genome of an individual by massively parallel DNA sequencing. Nature, 452(7189), 872–876.

    Article  CAS  PubMed  Google Scholar 

  • Wolovich, C. K., Perea-Rodriguez, J. P., & Fernandez-Duque, E. (2008). Food transfers to young and mates in wild owl monkeys (Aotus azarai). American Journal of Primatology, 70(3), 211–221.

    Article  PubMed  Google Scholar 

  • Wright, P. C. (1990). Patterns of paternal care in primates. International Journal of Primatology, 11(2), 89–102.

    Article  Google Scholar 

  • Wright, P. C. (1994). The behavior and ecology of the owl monkey. In J. F. Baer, R. E. Weller, & I. Kakoma (Eds.), Aotus: The owl monkey (pp. 97–113). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Wynne-Edwards, K. E., & Reburn, C. J. (2000). Behavioral endocrinology of mammalian fatherhood. Trends in Ecology & Evolution, 15(11), 464–468.

    Article  Google Scholar 

  • Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8), 1586–1591.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler, T. E., Wegner, F. H., & Snowdon, C. T. (1996). Hormonal responses to parental and nonparental conditions in male cotton-top tamarins, Saguinus oedipus, a New World primate. Hormones and Behavior, 30(3), 287–297.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler, T. E., Washabaugh, K. F., & Snowdon, C. T. (2004). Responsiveness of expectant male cotton-top tamarins, Saguinus oedipus, to mate’s pregnancy. Hormones and Behavior, 45(2), 84–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the editors and guest editors of the International Journal of Primatology for the opportunity to contribute research to this Special Issue. This study was made possible thanks to a University Research Fund award from the University of Pennsylvania (E. Fernandez-Duque), and research funds from the Department of Anthropology at the University of Pennsylvania (P. L. Babb). The authors thank the students, volunteers, and researchers who assisted with the capturing and sampling of the monkeys that led to the collection of samples used in this genetic study. Special gratitude is owed to Marcelo Rotundo for his assistance in the field during the past decade. We also thank Mr. John Adams, Mr. F. Middleton, and Ing. C. Cimino for their continuing support at Estancia Guaycolec. The Ministerio de la Producción, Subsecretaría de Ecología and Recursos Naturales from Formosa Province, the Dirección de Fauna Silvestre de la Nación Argentina, and the University of Pennsylvania IACUC board authorized and sponsored the owl monkey field research. P. L. Babb offers his thanks to the University of Pennsylvania’s Department of Anthropology and Graduate Group for project support. A. M. McIntosh thanks the Haverford College Department of Molecular Biology and Dr. Karl Johnson for their support. E. Fernandez-Duque gratefully acknowledges continuing financial support from the Wenner-Gren Foundation, the Leakey Foundation, the National Geographic Society, the National Science Foundation (BCS-0621020), and the Zoological Society of San Diego. T. G. Schurr further acknowledges the infrastructural support provided by the National Geographic Society. The authors also gratefully acknowledge the two anonymous reviewers whose thoughtful suggestions helped to strengthen this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. Babb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Marginal density plots depicting age values (time to most recent common ancestor [tmrca]) used as priors for different clades of taxa in BEAST coalescent analysis of PRLR locus. (JPEG 84 kb)

Online Resource 2

BEAST Priors. Data Sources: a Setoguchi and Rosenberger 1987; b Hartwig and Meldrum 2002; c Tejedor et al. 2006; d Takai et al. 2000, e Beard and Wang 2004, f Simons et al. 1987, g Miller and Simons 1997. (DOCX 32 kb)

Online Resource 3

PRLR coding variation in humans and owl monkeys as depicted by MAF plotted for all polymorphic sites along the assembled 1866 bp mRNA for given data sets. Data Source: 1000 Genomes Project Consortium 2010, 2012: ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/. (JPEG 161 kb)

Online Resource 4

Non-synonymous amino acid substitutions differentiating PRLR mRNA of humans and owl monkeys (DOCX 39 kb)

Online Resource 5

Genetic variation throughout the 200 kb region surrounding PRLR in humans. Depicted by MAF plotted for all 2980 polymorphic sites in the window of analysis. Data Source: 1000 Genomes Project Consortium 2010, 2012: ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/. (JPEG 276 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babb, P.L., McIntosh, A.M., Fernandez-Duque, E. et al. Prolactin Receptor Gene Diversity in Azara’s Owl Monkeys (Aotus azarai) and Humans (Homo sapiens) Suggests a Non-Neutral Evolutionary History among Primates. Int J Primatol 35, 129–155 (2014). https://doi.org/10.1007/s10764-013-9721-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-013-9721-9

Keywords

Navigation