, Volume 32, Issue 4, pp 865-877,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 23 Mar 2011

Anatomical Contributions to Hylobatid Taxonomy and Adaptation

Abstract

Compared with the great apes, the small-bodied hylobatids were treated historically as a relatively uniform group with 2 genera, Hylobates and the larger-bodied Symphalangus. Four genera are now recognized, each with a different chromosome number: Hoolock (hoolock) (38), Hylobates (44), Nomascus (crested gibbon) (52), and Symphalangus (siamang) (50). Previous morphological studies based on relative bone lengths, e.g., intermembral indices; molar tooth sizes; and body masses did not distinguish the 4 genera from each other. We applied quantitative anatomical methods to test the hypothesis that each genus can be differentiated from the others using the relative distribution of body mass to the forelimbs and hind limbs. Based on dissections of 13 hylobatids from captive facilities, our findings demonstrate that each of the 4 genera has a distinct pattern of body mass distribution. For example, the adult Hoolock has limb proportions of nearly equal mass, a pattern that differentiates it from species in the genus Hylobates, e.g., H. lar (lar gibbon), H. moloch (Javan gibbon), H. pileatus (pileated gibbon), Nomascus, and Symphalangus. Hylobates is distinct in having heavy hind limbs. Although Symphalangus has been treated as a scaled up version of Hylobates, its forelimb exceeds its hind limb mass, an unusual primate pattern otherwise found only in orangutans. This research provides new information on whole body anatomy and adds to the genetic, ecological, and behavioral evidence for clarifying the taxonomy of the hylobatids. The research also underscores the important contribution of studies on rare species in captivity.