Skip to main content
Log in

A NORWEGIAN OUT-OF-SCHOOL MATHEMATICS PROJECT’S INFLUENCE ON SECONDARY STUDENTS’ STEM MOTIVATION

  • Published:
International Journal of Science and Mathematics Education Aims and scope Submit manuscript

Abstract

Considerable resources are spent on initiatives aiming to increase achievement and participation in science, technology, engineering, and mathematics (STEM). Drawing on focus group interviews and a questionnaire study with participants in ENT3R, a Norwegian out-of-school mathematics program, we investigated why participants attended and stayed in this program and assessed how it influenced participants’ STEM motivation. The authors identified 3 aspects of ENT3R highlighted by the participants: The instructors provided good teaching, the instructors created a positive atmosphere, and the instructors engaged in interpersonal relationships. Moreover, drawing on the expectancy-value model, the authors found that ENT3R appeared to influence 5 factors in the model that are important for STEM motivation: expectation of success, interest–enjoyment value, attainment value, utility value, and cost. This study points to the importance of carefully recruited and trained instructors and of flexible, responsively designed extracurricular programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson-Rowland, M. R., Banks, D. L., Zerby, D. M. & Chain, E. A. (2005, October). Evaluating a collaborative program to increase the enrollment and retention of community college transfer students. Paper presented at the 35th ASEE/IEEE Frontiers in Education Conference, Indianapolis, IN.

  • Andrée, M. & Hansson, L. (2013). Marketing the ‘Broad Line’: Invitations to STEM education in a Swedish recruitment campaign. International Journal of Science Education, 35(1), 147–166. doi:10.1080/09500693.2012.695880.

    Article  Google Scholar 

  • Ashcraft, M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current Directions in Psychological Science, 11(5), 181–185.

    Article  Google Scholar 

  • Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77.

    Article  Google Scholar 

  • Buck, G. A., Clark, V. L., Leslie-Pelecky, D., Lu, Y. & Cerda-Lizarraga, P. (2008). Examining the cognitive processes used by adolescent girls and women scientists in identifying science role models: A feminist approach. Science Education, 92(4), 688–707.

    Article  Google Scholar 

  • Bøe, M. V. (2012). Science choices in Norwegian upper secondary school: What matters? Science Education, 96(1), 1–20. doi:10.1002/sce.20461.

    Article  Google Scholar 

  • Bøe, M. V., Henriksen, E. K., Lyons, T. & Schreiner, C. (2011). Participation in science and technology: Young people’s achievement-related choices in late modern societies. Studies in Science Education, 47(1), 37–71.

    Article  Google Scholar 

  • Cantrell, P. & Ewing-Taylor, J. (2009). Exploring STEM career options through collaborative high school seminars. Journal of Engineering Education, 98(3), 295–303.

    Article  Google Scholar 

  • Cleaves, A. (2005). The formation of science choices in secondary school. International Journal of Science Education, 27(4), 471–486.

    Article  Google Scholar 

  • Cummins, R. A. & Gullone, E. (2000). Why we should not use 5-point Likert scales: The case for subjective quality of life measurement. Paper presented at the Second International Conference on Quality of Life in Cities, Singapore.

  • Dabney, K. P., Tai, R. H., Almarode, J. T., Miller-Friedmann, J. L., Sonnert, G., Sadler, P. M. & Hazari, Z. (2011). Out-of-school time science activities and their association with career interest in STEM. International Journal of Science Education, Part B, 2(1), 63–79. doi:10.1080/21548455.2011.629455.

    Article  Google Scholar 

  • DeWitt, J., Archer, L., Osborne, J., Dillon, J., Willis, B. & Wong, B. (2011). High aspirations but low progression: The science aspirations–careers paradox amongst minority ethnic students. International Journal of Science and Mathematics Education, 9(2), 243–271. doi:10.1007/s10763-010-9245-0.

    Article  Google Scholar 

  • Eccles, J., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J. L. & Midgley, C. (1983). Expectancies, values, and academic behaviours. In J. T. Spence (Ed.), Achievement and achievement motives. Psychological and sociological approaches. San Francisco: W. H. Friedman & Co.

    Google Scholar 

  • Harackiewicz, J. M., Rozek, C. S., Hulleman, C. S. & Hyde, J. S. (2012). Helping parents to motivate adolescents in mathematics and science: An experimental test of a utility–value intervention. Psychological Science, 23(8), 899–906. doi:10.1177/0956797611435530.

    Article  Google Scholar 

  • Hattie, J. (Ed.). (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. London: Routledge.

    Google Scholar 

  • Hazari, Z., Sonnert, G., Sadler, P. M. & Shanahan, M.-C. (2010). Connecting high school physics experiences, outcome expectations, physics identity, and physics career choice: A gender study. Journal of Research in Science Teaching, 47(8), 978–1003.

    Google Scholar 

  • Holmegaard, H. T. (2012). The process of choosing what to study: A longitudinal study of upper secondary students’ identity work when choosing higher education. Accepted for publication 21.02.2012 in Scandinavian Journal of Educational Research.

  • Hyde, J. S. & Linn, M. C. (2006). DIVERSITY: Enhanced: Gender similarities in mathematics and science. Science, 314(5799), 599–600. doi:10.1126/science.1132154.

    Article  Google Scholar 

  • Jensen, F. & Bøe, M. V. (2013). A Norwegian 2-day recruitment event’s influence on upper secondary female students’ STEM motivations. Manuscript in progress.

  • Jussim, L. & Osgood, D. W. (1989). Influence and similarity among friends: An integrative model applied to incarcerated adolescents. Social Psychology Quarterly, 52(2), 98–112.

    Article  Google Scholar 

  • Kjærnsli, M., Lie, S., Olsen, R. V. & Roe, A. (Eds.). (2007). Tid for tunge løft. Norske elevers kompetanse i naturfag, lesing og matematikk i PISA 2006. [Time for heavy lifting. Norwegian students’ competence in science, reading, and mathematics in PISA 2006]. Oslo: Universitetsforlaget.

    Google Scholar 

  • Kjærnsli, M. & Roe, A. (Eds.). (2010). På rett spor. Norske elevers kompetanse i lesing, matematikk og naturfag i PISA 2009 [On the right track. Norwegian students competencies in reading, mathematics and science in PISA 2009]. Oslo: Universitetsforlaget.

    Google Scholar 

  • Krapp, A. & Prenzel, M. (2011). Research on interest in science: Theories, methods, and findings. International Journal of Science Education, 33(1), 27–50. doi:10.1080/09500693.2010.518645.

    Article  Google Scholar 

  • Krueger, R. A. (Ed.). (1998). Analyzing & reporting focus group results, vol. 6. Thousand Oaks: Sage.

    Google Scholar 

  • Larson, R. W. & Verma, S. (1999). How children and adolescents spend time across the world: Work, play, and developmental opportunities. Psychological Bulletin, 125(6), 701–736. doi:10.1037/0033-2909.125.6.701.

    Article  Google Scholar 

  • Lyons, T. (2006). Different countries, same science classes: Students’ experiences of school science in their own words. International Journal of Science Education, 28(6), 591–613.

    Article  Google Scholar 

  • Lyons, T. & Quinn, F. (2010). Choosing science. Understanding the declines in senior high school science enrolments (I. a. M. E. f. R. a. r. A. National Centre of Science, Trans.). Armidale: University of New England.

    Google Scholar 

  • Ministry of Education and Research (2010). Realfag for framtida. Strategi for styrking av realfagene 2010–2014 [STEM for the future. Strategy for strengthening the STEM disciplines 2010–2014.]. In M. o. e. a. research (Ed.). Oslo, Norway.

  • National Research Council (2009). In P. Bell, B. Lewenstein, A. W. Shouse & M. A. Feder (Eds.), Learning science in informal environments: People, places, and pursuits. Washington: National Academies Press.

    Google Scholar 

  • OECD (2008). Education at a glance 2008 OECD Indicators: OECD.

  • Osborne, J. & Dillon, J. (2008). Science education in Europe: Critical reflections. London: King’s College.

    Google Scholar 

  • Osborne, J., Simon, S. & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079.

    Article  Google Scholar 

  • Osborne, J., Simon, S. & Tytler, R. (2009). Attitudes towards science: An update. Paper presented at the Annual Meeting of the American Educational Research Association, San Diego, California.

  • Robson, C. (Ed.). (2002). Real world research (2nd ed.). Malden: Blackwell Publishing.

    Google Scholar 

  • Schreiner, C. (2006). Exploring a ROSE-garden. Norwegian youth’s orientations towards science–seen as signs of late modern identities. Doctor Scientarium, University of Oslo, Oslo.

  • Schreiner, C., Henriksen, E. K., Sjaastad, J., Jensen, F. & Løken, M. (2010). Vilje-con-valg: valg og bortvalg av realfag [Choosing—or not choosing—STEM higher education in Norway]. KIMEN, 2010(2), 1–107.

    Google Scholar 

  • Sjaastad, J. (2011). Sources of inspiration: The role of significant persons in young people’s choice of science in higher education. International Journal of Science Education, 34(10), 1615–1636. doi:10.1080/09500693.2011.590543.

    Article  Google Scholar 

  • Sjaastad, J. (2012). Measuring the ways significant persons influence attitudes towards science and mathematics. International Journal of Science Education, 35(2), 192–212. doi:10.1080/09500693.2012.672775.

    Article  Google Scholar 

  • Strauss, A. L. & Corbin, J. M. (Eds.). (1990). Basics of qualitative research: Grounded theory procedures and techniques. Newbury Park: Sage.

    Google Scholar 

  • Swimmer, F. & Jarratt-Ziemski, K. (2007). Intersections between science & engineering education and recruitment of female and Native American students. Paper presented at the ASEE Annual conference & exposition, Honolulu, HI.

  • Taconis, R. & Kessels, U. (2009). How choosing science depends on students’ individual fit to “science culture”. International Journal of Science Education, 31(8), 1115–1132.

    Article  Google Scholar 

  • The RENATE Centre (2011). The ENTER project—English summary retrieved 01.06.2011, from http://renatesenteret.no/content/1142/In-English.

  • UNESCO. (2010). Engineering: Issues, challenges and opportunities for development. Paris: UNESCO.

    Google Scholar 

  • Vollstedt, A.-M. & Wang, E. L. (2006). Adressing low enrollment in engineering schools using the segway HT as a recruitment tool. Paper presented at the 9th International Conference on Engineering Education, San Juan, PR.

  • Woolston, D. C., Zaki, E. & Winter, C. J. (1997). The effectiveness of freshman recruiting strategies: An analysis at the University of Wisconsin–Madison. Paper presented at the Frontiers in Education Conference: Teaching and Learning in an Era of Change, Pittsburgh, PA.

  • Yore, L. D. (2011). Foundations of scientific, mathematical, and technological literacies—common themes and theoretical frameworks. In L. D. Yore, E. V. d. Flier-Keller, D. W. Blades, T. W. Pelton & D. B. Zandvliet (Eds.), Pacific CRYSTAL centre for science, mathematics, and technology literacy: Lessons learned (pp. 23–44). Rotterdam: Sense Publishers.

  • Zeldin, A., Britner, S. & Pajares, F. (2008). A comparative study of the self-efficacy beliefs of successful men and women in mathematics, science and technology careers. Journal of Research in Science Teaching, 45(9), 1036–1058.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jørgen Sjaastad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, F., Sjaastad, J. A NORWEGIAN OUT-OF-SCHOOL MATHEMATICS PROJECT’S INFLUENCE ON SECONDARY STUDENTS’ STEM MOTIVATION. Int J of Sci and Math Educ 11, 1437–1461 (2013). https://doi.org/10.1007/s10763-013-9401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-013-9401-4

Key words

Navigation