Skip to main content
Log in

EXAMINATION OF THE RELATIONSHIP BETWEEN ENGAGEMENT IN SCIENTIFIC ARGUMENTATION AND CONCEPTUAL KNOWLEDGE

  • Published:
International Journal of Science and Mathematics Education Aims and scope Submit manuscript

ABSTRACT

Whereas there are some studies presenting the effects of argumentation on science knowledge development, there is still a need for research discovering the interrelationship between knowledge and argumentation. The purpose of this research was to investigate a possible relationship between students’ engagement in argumentation and their conceptual knowledge. A case study design was carried out for this research. The participants of the study were tenth graders studying in an urban all-girls school. There were 5 argumentations promoted in different contexts which were embedded through the dynamics chapter, for a 10-week period. Some of the conclusions drawn from the study are as follows: First, students’ quantity and quality of arguments improve through time as they get more involved with argumentation. Second, students’ knowledge does not improve instantly when they are involved with argumentation activities, that is, knowledge development in an argumentation process takes time. Third, students’ prior knowledge affects their participation in argumentation. Last, there are some patterns that indicate the relationship between argumentation and knowledge. However, students’ arguments and their knowledge do not develop at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bell, P. & Linn, M. C. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797–817.

    Article  Google Scholar 

  • Billig, M. (1987). Arguing and thinking: A rhetorical approach to social psychology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Blair, J. A. & Johnson, R. H. (1987). Argumentation as dialetical. Argumentation, 1, 41–56.

    Article  Google Scholar 

  • Carey, S. (1985). Are children fundamentally different kinds of thinkers and learners than adults? In S. Chipman, J. Segal & R. Glaser (Eds.), Thinking and learning skills (Vol. 2, pp. 485–514). Hillsdale: Lawrence Erlbaum and Associates.

    Google Scholar 

  • Clark, D. B. & Sampson, V. (2008). Assessing dialogic argumentation in online environments to relate structure, grounds, and conceptual quality. Journal of Research in Science Teaching, 45(3), 293–321.

    Article  Google Scholar 

  • Crossa, D., Taasoobshirazib, G., Hendricksc, S. & Hickeya, D. T. (2008). Argumentation: A strategy for improving achievement and revealing scientific identities. International Journal of Science Education, 30(6), 837–861.

    Article  Google Scholar 

  • Dewey, J. (1909/1991). How we think. Buffalo, NY: Prometheus Books.

  • Driver, R. H., Asoko, J., Leach, E., Mortimer, P. & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23, 5–12.

    Google Scholar 

  • Driver, R., Leach, J., Millar, R. & Scott, P. (1996). Young people’s images of science. Milton Keynes: Open University Press.

    Google Scholar 

  • Driver, R., Newton, P. & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84, 287–312.

    Article  Google Scholar 

  • Duschl, A. & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38, 39–72.

    Article  Google Scholar 

  • Erduran, S. (2008). Methodological foundations in the study of argumentation in science classrooms. In S. Erduran & M. P. Jime’nez-Aleixandre (Eds.), Argumentation in science education (pp. 47–69). The Netherlands: Springer.

    Google Scholar 

  • Erduran, S., Simon, S. & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88, 915–933.

    Article  Google Scholar 

  • Faltis, C. (1997). Case study methods in researching language and education. In N. H. Hornberger & D. Corson (Eds.), Encyclopedia of language and education: Research methods in language and education (volume 8) (pp. 145–152). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Giere, R. N. (1991). Understanding scientific reasoning (3rd ed.). Forth Worth: Holt, Rinehart & Winston.

    Google Scholar 

  • Halloun, I., Hake, R., Mosca, E., & Hestenes, D. (1995). Force concept inventory (revised 1995) in Mazur 1997 and password protected at http://modeling.la.asu.edu/modeling.html accessed on 24 May 2001.

  • Eskin, H. & Ogan-Bekiroglu, F. (in press). Argumentation as a strategy for conceptual learning of dynamics.

  • Hestenes, D., Wells, M. & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30(3), 141–151.

    Article  Google Scholar 

  • Hogan, K. & Fisherkeller, J. (1996). Representing students’ thinking about nutrient cycling in ecosystems: Bidimensional coding of a complex topic. Journal of Research in Science Teaching, 33(9), 941–970.

    Article  Google Scholar 

  • Hogan, K. & Fisherkeller, J. (2000). Dialogue as data: Assessing students’ scientific reasoning with interactive protocols. In J. J. Mintzes, J. H. Wandersee & J. D. Novak (Eds.), Assessing science understanding: A human constructivist view (pp. 95–127). San Diego: Academic.

    Google Scholar 

  • Jimenez-Aleixandre, M. P., Rodriguez, B. A. & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84, 757–792.

    Article  Google Scholar 

  • Johnson, R. H. (2000). Manifest rationality: A pragmatic theory of argument. New Jersey: Lawrence Erlbaum.

    Google Scholar 

  • Kelly, G. J., Druker, S. & Chen, C. (1998). Students’ reasoning about electricity: Combining performance assessments with argumentation analysis. International Journal of Science Education, 20(7), 849–871.

    Article  Google Scholar 

  • Koslowski, B. (1996). Theory and evidence: The development of scientific reasoning. Cambridge: The MIT Press.

    Google Scholar 

  • Krathwohl, D. R. (1997). Methods of educational and social science research: An integrated approach. Reading: Addison-Wesley Educational Publishers, Inc.

    Google Scholar 

  • Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229–269). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96(4), 674–689.

    Article  Google Scholar 

  • Kuhn, D. (1991). The skills of argument. New York: Cambridge University Press.

  • Kuhn, D. (1992). Thinking as argument. Harvard Educational Review, 62, 155–178.

    Google Scholar 

  • Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77, 319–337.

    Article  Google Scholar 

  • Kuhn, D., Shaw, W. & Felton, M. (1997). Effects of dyadic interaction on argumentative reasoning. Cognition and Instruction, 15(3), 287–315.

    Article  Google Scholar 

  • Leitão, S. (2000). The potential of argument in knowledge building. Human Development, 43, 332–360.

    Article  Google Scholar 

  • Latour, B. & Woolgar, S. (1986). Laboratory life: The construction of scientific facts. Princeton: Princeton University Press.

    Google Scholar 

  • Mason, L. (1998). Sharing cognition to construct shared knowledge in school context: The role of oral and written discourse. Instructional Science, 26, 359–389.

    Article  Google Scholar 

  • McNeill, K. L., Lizotte, D. J., Krajcik, J. & Marx, R. W. (2006). Supporting students’ construction of scientific explanations by fading scaffolds in instructional materials. The Journal of the Learning Sciences, 15(2), 153–191.

    Article  Google Scholar 

  • Means, L. M. & Voss, J. F. (1996). Who reasons well? Two studies of informal reasoning among children of different grade, ability, and knowledge levels. Cognition and Instruction, 14(2), 139–178.

    Article  Google Scholar 

  • Nussbaum, E. M., Sinatra, G. M. & Poliquin, A. (2008). Role of epistemic beliefs and scientific argumentation in science learning. International Journal of Science Education, 30(15), 1977–1999.

    Article  Google Scholar 

  • Newton, P., Driver, R. & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553–576.

    Article  Google Scholar 

  • Niaz, M., Aguilera, D., Maza, A. & Liendo, G. (2002). Arguments, contradictions, resistances, and conceptual change in students’ understanding of atomic structure. Science Education, 86, 505–525.

    Article  Google Scholar 

  • Novak, J. D. & Gowin, D. B. (1984). Learning how to learn. New York: Cambridge University Press.

    Book  Google Scholar 

  • Osborne, J., Erduran, S. & Simon, S. (2004). Enhancing the quality of argumentation in science classrooms. Journal of Research in Science Teaching, 41(10), 994–1020.

    Article  Google Scholar 

  • Perret-Clermont, A., Perret, J. A. & Bell, N. (1991). The social construction of meaning and cognitive activity in elementary school children. In L. B. Resnick, J. M. Levine & S. D. Teasley (Eds.), Perspectives on socially-shared cognition (pp. 41–62). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Quinn, V. (1997). Critical thinking in young minds. London: David Fulton.

    Google Scholar 

  • Richards, L. (2005). Handling qualitative data: A practical guide. London: Sage Publications.

    Google Scholar 

  • Sadler, T. D. & Zeidler, D. L. (2005). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 85, 71–93.

    Article  Google Scholar 

  • Sadler, T. D. & Fowler, S. R. (2006). A threshold model of content knowledge transfer for socioscientific argumentation. Science Education, 90, 986–1004.

    Article  Google Scholar 

  • Sampson, V. & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92, 447–472.

    Article  Google Scholar 

  • Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32(1), 102–119.

    Article  Google Scholar 

  • Schroeder, P. G. (1996). Science as argument: A context using peer dyads to promote conceptual change among community college chemistry students. Unpublished dissertation, Kansas State University. Manhattan, Kansas.

  • Siegel, H. (1989). The rationality of science, critical thinking, and science education. Synthese, 80, 9–41.

    Article  Google Scholar 

  • Simon, S., Erduran, S. & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2–3), 235–260.

    Article  Google Scholar 

  • Stake, R. (1995). The art of case-study research. Thousand Oaks: Sage.

    Google Scholar 

  • Tavares, M. L., Jimenez-Aleixandre, M. P. & Mortimer, E. F. (2010). Articulation of conceptual knowledge and argumentation practices by high school students in evolution problems. Science Education, 19, 573–598.

    Article  Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Toulmin, S. (1972). Human understanding: The collective use and evolution of concepts. Princeton: Princeton University Press.

    Google Scholar 

  • Willard, A. (1989). A theory of argumentation. Tuscaloosa: The University of Alabama Press.

    Google Scholar 

  • Williams, M. (2004). Generalized additive models. In M. S. Lewis-Beck, A. Bryman & T. F. Liao (Eds.), The SAGE encyclopedia of social science research methods (volume 2) (pp. 420–421). Thousand Oaks: SAGE Publications.

    Google Scholar 

  • Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October 3, 2007 from http://wpe.info/papers_table.html.

  • van Eemeren, F. H., Grootendorst, R., Henkemans, F. S., Blair, J. A., Johnson, R. H., Krabbe, E. C. W., Plantin, C., et al (1996). Fundamentals of argumentation theory: A handbook of historical backgrounds and contemporary developments. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Veerman, A., Andriessen, J. & Kanselaar, G. (2002). Collaborative argumentation in academic education. Instructional Science, 30, 155–186.

    Article  Google Scholar 

  • von Aufschnaiter, C., Erduran, S., Osborne, J. & Simon, S. (2007). Argumentation and the learning of science. In R. Pinto & D. Couso (Eds.), Contributions from science education research (pp. 377–388). The Netherlands: Springer.

    Chapter  Google Scholar 

  • von Aufschnaiter, C., Erduran, S., Osborne, J. & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101–131.

    Article  Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes. Cambridge: Harvard University Press.

    Google Scholar 

  • Zohar, A. & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feral Ogan-Bekiroglu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 39 kb)

ESM 2

(DOC 36 kb)

ESM 3

(DOC 36 kb)

ESM 4

(DOC 33 kb)

ESM 5

(DOC 31 kb)

ESM 6

(DOC 30 kb)

ESM 7

(DOC 31 kb)

ESM 8

(DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogan-Bekiroglu, F., Eskin, H. EXAMINATION OF THE RELATIONSHIP BETWEEN ENGAGEMENT IN SCIENTIFIC ARGUMENTATION AND CONCEPTUAL KNOWLEDGE. Int J of Sci and Math Educ 10, 1415–1443 (2012). https://doi.org/10.1007/s10763-012-9346-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-012-9346-z

KEY WORDS

Navigation