Skip to main content
Log in

CMOS Integrated Lock-in Readout Circuit for FET Terahertz Detectors

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this paper, a switched-capacitor readout circuit topology integrated with a THz antenna and field-effect transistor detector is analyzed, designed, and fabricated in a 0.13-μm standard CMOS technology. The main objective is to perform amplification and filtering of the signal, as well as subtraction of background in case of modulated source, in order to avoid the need for an external lock-in amplifier, in a compact implementation. A maximum responsivity of 139.7 kV/W, and a corresponding minimum NEP of 2.2 nW/√Hz, was obtained with a two-stage readout circuit at 1 kHz modulation frequency. The presented switched-capacitor circuit is suitable for implementation in pixel arrays due to its compact size and power consumption (0.014 mm2 and 36 μW).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and Zimdars, D., “THz imaging and sensing for security applications – explosives, weapons and drugs”, Semicond. Sci. Technol., vol. 20, no. 7, pp. S266–S280, June 2005.

  2. U. R. Pfeiffer, “Sub-millimeter Wave Active Imaging with Silicon Integrated Circuits”, in Proc. 36th Int. Conf. Infrared, Millimeter, and Terahertz Waves, Oct. 2011, pp. 1–4.

  3. F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M.D. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. K. Huhn, G. Spickermann, P. H. Bolivar, and H. G. Roskos, “THz Active Imaging Systems With Real-Time Capabilities”, IEEE Trans. on Terahertz Science and Technology, vol. 1, no. 1, pp. 183–200, Sep. 2011.

  4. R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H.M. Keller, A. Cathelin, A. Kaiser, and U.R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7-1.1 Terahertz Imaging Applications in 65-nm CMOS”, IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2999–3012, Dec. 2012.

  5. A. Lisauskas, M. Bauer, S. Boppel, M. Mundt, B. Khamaisi, E. Socher, R. Venckevičius, L. Minkevičius, I. Kašalynas, D. Seliuta, G. Valušis, V. Krozer, and H. G. Roskos, “Exploration of Terahertz Imaging with Silicon MOSFETs”, J. Infrared, Millim.THz Waves,, vol. 35, no. 1, pp. 63–80, Jan. 2014.

  6. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and, W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors”, Opt. Exp., vol. 19, no. 8, pp. 7827–7832, April 2011.

  7. D. Y. Kim, S. Park, R. Han, K. K. O, “820-GHz Imaging Array Using Diode-Connected NMOS Transistors in 130-nm CMOS”, in Symposium on VLSI Circuits, June 2013, pp. 12–14.

  8. S-T. Han, W. K. Park, Y-H. Ahn, W-J. Lee, and H. S. Chun, “Development of a compact sub-terahertz gyrotron and its application to t-ray real-time imaging for food inspection”, in Proc. 37th Int. Conf. Infrared, Millimeter, and Terahertz Waves, Sept. 2012, pp. 1–2.

  9. S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser”, Appl. Phys. Lett., vol. 88, no. 15, p. 153903, April 2006.

  10. Y. C. Sim, K-M. Ahn, J. Y. Park, C-S. Park, and J-H. Son, “Temperature-dependant terahertz imaging of excised oral malignant melanoma”, IEEE Trans. on Terahertz Science and Technology, vol. 3, no. 4, pp. 368–373, July 2013.

  11. Tohme, L., Ducournau, G., Blin, S., Coquillat, D., Nouvel, P., Penarier, A., Knap, W., and Lampin, J.F., “0.2 THz wireless communication using plasma-wave transistor detector”, in Proc. 38th Int. Conf. Infrared, Millimeter, and Terahertz Waves, Sept. 2013, p. 1.

  12. F. Schuster, H. Videlier, A. Dupret, D. Coquillat, M. Sakowicz, J-P. Rostaing, M. Tchagaspanian, B. Giffard, and W. Knap, “A Broadband THz Imager in a Low-Cost CMOS Technology”, in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2011, pp. 42–43.

    Google Scholar 

  13. A. Boukhayma, J.-P. Rostaing, A. Mollard, F. Guellec, M. Benetti, G. Ducournau, J.-F. Lampin, A. Dupret, C. Enz, M. Tchagaspanian, J.-A. Nicolas, “A 533pW NEP 31 × 31 pixel THz image sensor based on in-pixel demodulation,” 40th European Solid State Circuits Conference (ESSCIRC), pp.303,306, 22–26 Sept. 2014.

  14. M. Dyakonov, and M. S. Shur, “Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current”, Phys. Rev. Lett., vol. 71, no. 15, pp. 2465–2468, Oct. 1993.

  15. F. Schuster, H. Videlier, A. Dupret, D. Coquillat, M. Sakowicz, J-P. Rostaing, M. Tchagaspanian, B. Giffard, and W. Knap, “A Broadband THz Imager in a Low-Cost CMOS Technology”, in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2011, pp. 42–43.

  16. H. Sherry, J. Grzyb, Y. Zhao, R. Al Hadi, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1kPixel CMOS Camera Chip for 25fps Real-Time Terahertz Imaging Applications”, in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2012, pp. 252–254.

  17. S. Domingues, D. Perenzoni, V. Giliberti, A. Di Gaspare, M. Ortolani, M. Perenzoni, and D. Stoppa, “Analysis of CMOS 0.13μm test structures for 0.6 to 1.5THz imaging”, in Proc. 38th Int. Conf. Infrared, Millimeter, and Terahertz Waves, Sept. 2013, pp. 1–2.

  18. S. Domingues, D. Perenzoni, M. Perenzoni, and D. Stoppa, “Design and Characterization of a Readout Circuit for FET-based THz Imaging”, in Proc. SPIE, vol. 9141, April 2014, p. 914105.

  19. S. Domingues, M. Perenzoni, D. Stoppa, A.D. Capobianco, and F. Sacchetto, “A CMOS THz staring imager with in-pixel electronics”, in Proc.7th Conference on Ph.D. Research in Microelectronics and Electronics, July 2011, pp. 81–84.

  20. A. M. Fowler, and I. Gatley, “Demonstration Of An Algorithm For Read-Noise Reduction In Infrared Arrays”, The Astrophysical Journal, 353:L33-L34, 10 April 1990.

  21. C. Enz, and A. Boukhayma, “Recent trends in low-frequency noise reduction techniques for integrated circuits”, International Conference on Noise and Fluctuations (ICNF), Xian, pp. 1–6, 2015.

  22. M. Ali, M. Perenzoni, D. Stoppa, “A Methodology to Measure Input Power and Effective Area for Characterization of Direct THz Detectors”, IEEE Trans. on Instrumentation and Measurements, vol.65, no.6, pp.1225-1231, May 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Perenzoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingues, S., Perenzoni, D., Perenzoni, M. et al. CMOS Integrated Lock-in Readout Circuit for FET Terahertz Detectors. J Infrared Milli Terahz Waves 38, 679–688 (2017). https://doi.org/10.1007/s10762-017-0372-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-017-0372-3

Keywords

Navigation