Skip to main content
Log in

Photoconductive LT-GaAs Terahertz Antennas: Correlation Between Surface Quality and Emission Strength

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We investigate the influence of the surface properties of a low-temperature-grown GaAs photoconductive antenna on the terahertz (THz) emission strength, using a specially designed THz time-domain spectroscopy system. The system allows us to excite six different positions along the 10 μm gap of a coplanar stripline antenna with a length of 10 mm without changing the alignment of the optical or THz beam path. A comparison to the surface roughness and the grain size which are extracted from an atomic force and a scanning electron microscope is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Leinß, T. Kampfrath, K. V. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, Terahertz coherent control of optically dark paraexcitons in Cu2O, Phys. Rev. Lett. 101, 246401 (2008).

    Article  Google Scholar 

  2. S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, Terahertz spectroscopy on polymers: A review of morphological studies, J. Mol. Struct. 1006, 41–51 (2011).

    Article  Google Scholar 

  3. I. Ivanov, M. Bonn, Z. Mics, and D. Turchinovich, Perspective on terahertz spectroscopy of graphene, EPL Europhysics Lett. 111, 67001 (2015).

    Article  Google Scholar 

  4. M. Herrmann, M. Tani, K. Sakai, and R. Fukasawa, Terahertz imaging of silicon wafers, J. Appl. Phys. 91, 1247–1250 (2002).

    Article  Google Scholar 

  5. S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, Terahertz imaging: A new non-destructive technique for the quality control of plastic weld joints, J. Eur. Opt. Soc. 2, 2–6 (2007).

    Google Scholar 

  6. C. Jördens and M. Koch, Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy, Opt. Eng. 47, 37003 (2008).

    Article  Google Scholar 

  7. A. Soltani, S. F. Busch, P. Plew, J. C. Balzer, and M. Koch, THz ATR Spectroscopy for Inline Monitoring of Highly Absorbing Liquids, J. Infrared, Millimeter, Terahertz Waves 37, 1001–1006 (2016).

    Article  Google Scholar 

  8. M. Reuter, O. M. Abdulmunem, J. C. Balzer, M. Koch, and D. G. Watson, Using Terahertz Time-Domain Spectroscopy to Discriminate among Water Contamination Levels in Diesel Engine Oil, Trans. ASABE 59, 795–801 (2016).

    Google Scholar 

  9. R. Gente, S. F. Busch, E.-M. Stubling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy, IEEE Trans. Terahertz Sci. Technol. 6, 1–3 (2016).

    Article  Google Scholar 

  10. P. R. Smith, D. H. Auston, and M. C. Nuss, Subpicosecond photoconducting dipole antennas, IEEE J. Quantum Electron. 24, 255–260 (1988).

    Article  Google Scholar 

  11. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection, Appl. Phys. Lett. 73, 444 (1998).

    Article  Google Scholar 

  12. N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, Terahertz-time domain spectrometer with 90 dB peak dynamic range, J. Infrared, Millimeter, Terahertz Waves 35, 823–832 (2014).

    Article  Google Scholar 

  13. M. Suzuki and M. Tonouchi, Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses, Appl. Phys. Lett. 86, 163504 (2005)

    Article  Google Scholar 

  14. S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, 1550 nm ErAs:In(Al)GaAs large area photoconductive emitters, Appl. Phys. Lett. 101, 101105 (2012).

    Article  Google Scholar 

  15. E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer, Appl. Phys. Lett. 64, 3311 (1994).

    Article  Google Scholar 

  16. S. Matsuura, M. Tani, and K. Sakai, Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas, Appl. Phys. Lett. 70, 559 (1997).

    Article  Google Scholar 

  17. R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, Continuous wave terahertz spectrometer as a noncontact thickness measuring device, Appl. Opt. 47, 3023 (2008).

    Article  Google Scholar 

  18. D. A. Murdick, X. W. Zhou, and H. N. G. Wadley, Low-temperature atomic assembly of stoichiometric gallium arsenide from equiatomic vapor, J. Cryst. Growth 286, 197–204 (2006).

    Article  Google Scholar 

  19. S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures, Appl. Phys. Lett. 59, 3276 (1991).

    Article  Google Scholar 

  20. Z. Liliental-Weber, H. J. Cheng, S. Gupta, J. Whitaker, K. Nichols, and F. W. Smith, Structure and carrier lifetime in LT-GaAs, J. Electron. Mater. 22, 1465–1469 (1993).

    Article  Google Scholar 

  21. S. Verghese, K. a. McIntosh, and E. R. Brown, Optical and terahertz power limits in the low-temperature-grown GaAs photomixers, Appl. Phys. Lett. 71, 2743 (1997).

    Article  Google Scholar 

  22. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs, Appl. Opt. 36, 7853 (1997).

    Article  Google Scholar 

  23. N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, Impact of the contact metallization on the performance of photoconductive THz antennas, Opt. Express 16, 19695 (2008).

    Article  Google Scholar 

  24. M. Mikulics, Xuemei Zheng, R. Adam, R. Sobolewski, and P. Kordos, High-speed photoconductive switch based on low-temperature GaAs transferred on SiO/sub 2/-Si substrate, IEEE Photonics Technol. Lett. 15, 528–530 (2003).

    Article  Google Scholar 

  25. M. Mikulics, S. Wu, M. Marso, R. Adam, A. Forster, A. van der Hart, P. Kordos, H. Luth, and R. Sobolewski, Ultrafast and highly sensitive photodetectors with recessed electrodes fabricated on low-temperature-grown GaAs, IEEE Photonics Technol. Lett. 18, 820–822 (2006).

    Article  Google Scholar 

  26. M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. van der Hart, H. P. Bochem, H. Lüth, and P. Kordoš, Traveling-wave photomixer with recessed interdigitated contacts on low-temperature-grown GaAs, Appl. Phys. Lett. 88, 41118 (2006).

    Article  Google Scholar 

  27. O. M. Abdulmunem, N. Born, M. Mikulics, J. C. Balzer, M. Koch, and S. Preu, High Accuracy Terahertz Time-Domain System for Reliable Characterization of Photoconducting Antennas, Microw. Opt. Technol. Lett. 59, 468–472 (2017).

    Article  Google Scholar 

  28. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods 9, 671–675 (2012).

    Article  Google Scholar 

  29. J. Y. W. Seto, The electrical properties of polycrystalline silicon films, J. Appl. Phys. 46, 5247 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Balzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulmunem, O.M., Hassoon, K.I., Völkner, J. et al. Photoconductive LT-GaAs Terahertz Antennas: Correlation Between Surface Quality and Emission Strength. J Infrared Milli Terahz Waves 38, 574–582 (2017). https://doi.org/10.1007/s10762-016-0353-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0353-y

Keywords

Navigation