Skip to main content
Log in

A Free-Space Measurement Technique of Terahertz Dielectric Properties

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The free-space method for material dielectric characterization in the microwave band is extended to terahertz frequencies. By analyzing the advantages and disadvantages of the relative permittivity of the transmission/reflection method for non-magnetic materials, a fast calculation method using a transmission-only method is proposed. Based on the convergence analysis of the algorithm, a method to estimate the initial value is also proposed. Finally, through measurements of the permittivity of high-density polyethylene, polystyrene, polypropylene, and polymethyl methacrylate in the 325–500 GHz band, we verify the rationality of the algorithm and demonstrate its applicability. Through the combination of the two methods, the terahertz dielectric properties of a majority of flat non-conducting solid materials and non-polar liquid materials can be measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. M. Liu, “Dielectric and measurement techniques,” (Beijing University of Posts and Telecommunications, Beijing, 2015), pp. 40–46

  2. L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, “Microwave Electronics: Measurement and Materials Characterization,” West Sussex, U. K. Wiley, 2004.

  3. H. H. Ouslimani, R. Abdeddaim, and A. Priou, “Free-Space Electromagnetic Characterization of Materials for Microwave and Radar Applications,” Piers Online, 1(2): 128–132, 2005.

    Article  Google Scholar 

  4. S. O. Nelson, “Measurement of microwave dielectric properties of particulate materials,” J. Food Eng, 21(3): 365–384, 1994.

    Article  Google Scholar 

  5. M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics, 1(2): 97–105, 2007.

    Article  Google Scholar 

  6. “Agilent Technologies: Basics of Measuring the Dielectric Properties of Materials,” Measurement Techniques: Application Note, 5989–2589EN, 2005.

  7. H. S. Ku, J. A. R. Ball, E. Siores, and P. Chan, “Microwave Processing and Permittivity Measurement of Thermoplastic Composites at Elevated Temperatures,” In: 12th International Conference on Composite Materials, pp. 5–9, 1999.

  8. S. O. Nelson, P. G. Bartley, “Open-ended coaxial-line permittivity measurements on pulverized materials,” IEEE Trans. Instrum. Meas., 47(1): 133–137, 1998.

    Article  Google Scholar 

  9. E. Li, Z. P. Nie, G. Guo, Q. Zhang, Z. Li, and F. He, “Broadband Measurements of Dielectric Properties of Low-Loss Materials at High Temperatures Using Circular Cavity Method,” Prog. Electromagn. Res., 92(4): 103–120, 2009.

    Article  Google Scholar 

  10. D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas., 39(2): 387–394, 1990.

    Article  Google Scholar 

  11. M. Imparato, T. Weller, L. Dunleavy. “On-wafer calibration using space-conservative (SOLT) standards”, Int. Microwave Symp. Dig., 4(4): 1643–1646, 1999.

    Google Scholar 

  12. I. Rolfes, and B. Schiek, “Calibration methods for microwave free space measurements,” Radio Sci., 13(1): 3–8, 1984.

    Google Scholar 

  13. T. F. Dion, “W-band Free Space Permittivity Measurement Setup for Candidate Radome Materials”, NASA Contractor Report 201720 Contract NASA1-96014, pp. 1–9, 1997.

  14. P. G. Bartley, and S. B. Begley, “A new free-space calibration technique for materials measurement,” IEEE International Instrumentation & Measurement Technology Conference, pp. 47–51, 2012.

  15. F. H. Wee, P. J. Soh, A. H. M. Suhaizal, H. Nornikman, and A. A. M. Ezanuddin, “Free Space Measurement Technique on Dielectric Properties of Agricultural Residues at Microwave Frequencies,” International Microwave and Optoelectronics Conference (IMOC 2009), Belem, Brazil, pp. 182–187, 2009.

  16. A. M. Nicolson, and G. F. Ross, “Measurement of the intrinsic properties of materials by time domain techniques”, IEEE Trans. Instrum. Meas., IM-19(4): 377–382, 1970.

    Article  Google Scholar 

  17. W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE, 62(1): 33–36, 1974.

    Article  Google Scholar 

  18. D. F. Williams, “500GHz-750GHz rectangular waveguide vector network analyzer calibrations,” IEEE Trans. Terahertz Sci. Technol., 1(2): 364–377, 2011.

    Article  Google Scholar 

  19. G. L. Friedsam, M. Biebl, “A broadband free-space dielectric properties measurement system at millimeter wavelengths,” IEEE Trans. Instrum. Meas., 46(2): 515–518, 1997.

    Article  Google Scholar 

  20. U. C. Hasar, and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microwave Theory Tech., 57(2): 471–477, 2009.

    Article  Google Scholar 

  21. J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method”, IEEE Trans. Microwave Theory Tech., 38(8):1096–1103, 1990.

    Article  Google Scholar 

  22. D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies,” IEEE Trans. Instrum. Meas., 38(3): 789–793, 1989.

    Article  Google Scholar 

  23. J. A. R. Ball, B. Horsfield, “Resolving ambiguity in broadband waveguide permittivity measurements on moist materials,” IEEE Trans. Instrum. Meas., 47(2): 390–392, 1998.

    Article  Google Scholar 

  24. O. Büyüköztürk, T. Y. Yu, and J. A. Ortega, “A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements,” Cement & Concrete Composition, 28(4): 349–359, 2006.

    Article  Google Scholar 

  25. E. Hakansson, A. Amie, and A. Kaynak, “Dielectric characterization of conducting textiles using free space transmission measurements: Accuracy and methods for improvement,” Synth. Met., 157(24): 1054–1063, 2007.

    Article  Google Scholar 

  26. A. Kazemipour, M. Hudlicka, M. Salhi, and T. Kleine-Ostmann, “Free-space quasi-optical spectrometer for material characterization in the 50–500 GHz frequency range,” 44th European Microwave Conference, pp. 636–639, 2014.

  27. Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc., 49(2):513–517, 2006.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Department of Science and Technology of Shandong Province (Project Numbers 2015GGX101030 and 2016GGX101010), the Ministry of Science and Technology of China (Project Number 2015DFA11200), and the Shandong Provincial Natural Science Foundation (Project Number ZR2014FP007), the Youth Science Funds of Shandong Academy of Sciences, and the Innovation Program of the Shandong Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianying Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chang, T., Cui, HL. et al. A Free-Space Measurement Technique of Terahertz Dielectric Properties. J Infrared Milli Terahz Waves 38, 356–365 (2017). https://doi.org/10.1007/s10762-016-0341-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0341-2

Keywords

Navigation