Skip to main content
Log in

Optimization of the Tilted-Pulse-Front Terahertz Excitation Setup Containing Telescope

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Optimization of the telescopic tilted-pulse-front terahertz excitation setup with respect to the imaging errors is given. A guideline is presented in the form of simple analytical formulae describing the optimal geometrical configuration of the telescopic setup. Pump pulse distortions and terahertz wave-front distortions are analyzed by ray tracing calculations supposing near-infrared pump pulses with 200 fs transform limited pulse length. The detrimental effects of imaging errors in a tilted-pulse-front terahertz source can be significantly reduced by using telescopic imaging instead of one-lens. It is also shown, that in the case of the one-lens setup significant, and in the case of the telescopic setup, less significant reduction of the imaging errors can be achieved by using achromat lens(es) instead of singlet one(s). Calculation results show that the telescopic setup consisting of two achromat lenses is the most promising choice among the practically relevant schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).

    Article  Google Scholar 

  2. J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22, 20155–20163 (2014).

    Article  Google Scholar 

  3. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18, 12311–12327 (2010).

    Article  Google Scholar 

  4. S. B. Bodrov, A. A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted-front laser pulses in weakly and strongly nonlinear regimes,” Applied Physics Letters 103, 251103 (2013).

    Article  Google Scholar 

  5. S.-C. Zhong, Z.-H. Zhai, J. Li, L.-G. Zhu, J. Li, K. Meng, Q. Liu, L.-H. Du, J.-H. Zhao, and Z.-R. Li, “Optimization of terahertz generation from LiNbO3 under intense laser excitation with the effect of three-photon absorption,” Opt. Express 23, 31313–31323 (2015).

    Article  Google Scholar 

  6. X. Wu, S. Carbajo, K. Ravi, F. Ahr, G. Cirmi, Y. Zhou, O. D. Mücke, and F. X. Kärtner, “Terahertz generation in lithium niobate driven by Ti:sapphire laser pulses and its limitations,” Opt. Lett. 39, 5403–5406 (2014).

    Article  Google Scholar 

  7. K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23, 5253–5276 (2015).

    Article  Google Scholar 

  8. K. Ravi, W. R. Huang, S. Carbajo, X. J. Wu, and F. Kartner, “Limitations to THz generation by optical rectification using tilted pulse fronts,” Opt. Express 22, 20239–20251 (2014).

    Article  Google Scholar 

  9. I. Z. Kozma, G. Almási, and J. Hebling, “Geometrical optical modeling of femtosecond setups having angular dispersion,” Applied Physics B 76, 257–261 (2003).

    Article  Google Scholar 

  10. L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Applied Physics Letters 92, 171107 (2008).

    Article  Google Scholar 

  11. M. Kunitski, M. Richter, M. D. Thomson, A. Vredenborg, J. Wu, T. Jahnke, M. Schöffler, H. Schmidt-Böcking, H. G. Roskos, and R. Dörner, “Optimization of single-cycle terahertz generation in LiNbO3 for sub-50 femtosecond pump pulses,” Opt. Express 21, 6826–6836 (2013).

    Article  Google Scholar 

  12. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Applied Physics Letters 98, 091106 (2011).

    Article  Google Scholar 

  13. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Erratum: “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3” [Appl. Phys. Lett. 98, 091106 (2011)],” Applied Physics Letters 103, 259901 (2013).

    Article  Google Scholar 

  14. H. Hirori, and K. Tanaka, “Nonlinear Optical Phenomena Induced by Intense Single-Cycle Terahertz Pulses,” IEEE Journal of Selected Topics in Quantum Electronics 19, 8401110–8401110 (2013).

    Article  Google Scholar 

  15. C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. A. Fülöp, “Nonlinear distortion of intense THz beams,” New Journal of Physics 17, 083041 (2015).

    Article  Google Scholar 

  16. S.-C. Zhong, J. Li, Z.-H. Zhai, L.-G. Zhu, J. Li, P.-W. Zhou, J.-H. Zhao, and Z.-R. Li, “Generation of 0.19-mJ THz pulses in LiNbO3 driven by 800-nm femtosecond laser,” Opt. Express 24, 14828–14835 (2016).

    Article  Google Scholar 

  17. J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Optical and Quantum Electronics 28, 1759–1763 (1996).

    Article  Google Scholar 

  18. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification: erratum,” Opt. Express 19, 22950–22950 (2011).

    Article  Google Scholar 

  19. T. Clausnitzer, T. Kämpfe, E. B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, “Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency,” Opt. Express 16, 5577–5584 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from Hungarian Scientific Research Fund (OTKA) grant number 113083 is acknowledged. The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levente Tokodi.

Appendix

Appendix

The lens specifications of the one-lens and telescopic setups are seen in Table 1. The singlet and near-infrared achromat lenses were selected from catalogues (EO: Edmund Optics, TL: ThorLabs). The nominal focal lengths and lens materials are given in the Table. The notation “Material Ij” denotes the material type of the jth layer of the Ith lens, with j, I = 1, 2. “Cat. Nr. I” denotes the catalogue number of the Ith lens. Obviously in some cases some data are not relevant (n.r.). The last two columns show the \( \sqrt{a} \) factor (Eq. (19)) and the focal length ratio.

Table 1 The specifications of the lenses used in the simulations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokodi, L., Hebling, J. & Pálfalvi, L. Optimization of the Tilted-Pulse-Front Terahertz Excitation Setup Containing Telescope. J Infrared Milli Terahz Waves 38, 22–32 (2017). https://doi.org/10.1007/s10762-016-0307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0307-4

Keywords

Navigation