Skip to main content
Log in

Monitoring PM2.5 in the Atmosphere by Using Terahertz Time-Domain Spectroscopy

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The real-time monitoring of the air pollution with multiple sources is of great significance for pollution control and environmental protection. In this paper, we presented a study of terahertz time-domain spectroscopy (THz-TDS) as a direct tool for monitoring the component and content of PM2.5 in atmosphere. Due to the THz absorption, the intensities of the peaks in THz-TDS decreased with the augment of PM2.5 and were proportional to the PM2.5 content. The ratio of absorbance A to PM2.5 reflected a basically unchanged tendency, indicating the little change of principal elements under the pollution degree. In the high-pollution condition, a lot of SO2 from vehicle and factory was emitted into air. The elements, such as S and O from anions, had a stronger absorption effect in THz range. Based on the absorbance spectra, the absorption tendencies with PM2.5 over the whole range were validated by principal component analysis and the quantitative model with a high correlation was built by using back propagation artificial neural network. BPANN model improved the precision of linear fitting between peak intensities and PM2.5. The research demonstrates that THz-TDS is a promising tool for fast, direct, and reliable monitoring in environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Yuan, S. Liu, R. Castro, and X. Pan, Environ. Sci. Technol. 46, 3627–3628 (2012).

    Article  Google Scholar 

  2. K. Austen, Nature 517, 136–138 (2015).

    Article  Google Scholar 

  3. D. Y. H. Pui, S. C. Chen, and Z. Zuo, Particuology 13, 1–26 (2014).

    Article  Google Scholar 

  4. C. Loftus, M. Yost, P. Sampson, G. Arias, E. Torres, V. B. Vasquez, P. Bhatti, and C. Karr, Environ. Res. 136, 505–512 (2015).

    Article  Google Scholar 

  5. N. Chu, J. B. Kadane, and C. I. Davidso, Environ. Sci. Technol. 43, 2407–2411 (2009).

    Article  Google Scholar 

  6. C. Brokamp, M. B. Rao, Z. Fan, and P. H. Ryan, Atmos. Environ. 101, 226–234 (2015).

    Article  Google Scholar 

  7. J. Wagner, K. Naik-patel, S. Wall, and M. Harnly, Atmos. Environ. 54, 260–271 (2012).

    Article  Google Scholar 

  8. H. L. Zhan, S. X. Wu, R. M. Bao., L. N. Ge, and Zhao K, Fuel 143, 189–193 (2015).

    Article  Google Scholar 

  9. H. Pűhringer, Z. Nejim, M. Pfleger, S. Katletz, J. Infrared Milli. Terahz. Waves 37, 123–127 (2016).

    Article  Google Scholar 

  10. X. Feng, S. X. Shi, K. Zhao, W. Wang, H. L. Zhan, C. Jiang, L. Z. Xiao, and S. H. Chen, Opt. Express 23, 1693–1699 (2015).

    Article  Google Scholar 

  11. H. Zhao, K. Zhao, R. M. Bao, J. Infrared Milli. Terahz. Waves 33, 522–528 (2012)

    Article  Google Scholar 

  12. L. N. Ge, H. L. Zhan, W. X. Leng, K. Zhao, and L. Z. Xiao, Energy Fuels 29, 1622–1627 (2015).

    Article  Google Scholar 

  13. H. L. Zhan, S. X. Wu, R. M. Bao, K. Zhao, L. Z. Xiao, L. N. Ge, and H. J. Shi, RSC Adv. 5, 14389–14392 (2015).

    Article  Google Scholar 

  14. Q. Li, K. Zhao, L. W. Zhang, C. Liang, Z. W. Zhang, C. L. Zhang, and D. H. Han, Sci. China-Phys.Mech. Astron. 57, 2354–2356 (2014).

    Article  Google Scholar 

  15. P. U. Jepsen, D. G. Cooke, and M. Koch. Laser Photonics Rev. 5, 124–166 (2011).

    Article  Google Scholar 

  16. W. X. Leng, H. L. Zhan, L. N. Ge, W. Wang, Y. Ma, K. Zhao, S. Y. Li, and L. Z. Xiao, Fuel 159, 84–88 (2015).

    Article  Google Scholar 

  17. H. L. Zhan, Q. Li, K. Zhao, L. W. Zhang, Z. W. Zhang, C. L. Zhang, and L. Z. Xiao, IEEE T. THz Sci. Techn. 5, 1–7 (2015).

    Article  Google Scholar 

  18. H. L. Zhan, S. N. Sun, K. Zhao, W. X. Leng, R. M. Bao, and L. Z. Xiao. Sci. China Tech. Sci. 58, 2104–2109 (2015).

    Article  Google Scholar 

  19. M. Kaushik, B. W. H. Ng, B. M. Fischer and D. Abbott. Appl. Phys. Lett. 100, 011107 (2012).

    Article  Google Scholar 

  20. S. Han, J. S. Youn, and Y. W. Jung, Atmos. Environ. 45, 3343–3351 (2011).

    Article  Google Scholar 

  21. A. D. Burnett, W. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. Edwards, E. H. Linfield, and A. G. Davies. Analyst 134, 1658–1668 (2009).

  22. S. Jiang, Z. Ren, K. Xue, and C. Li, J. Mater. Process Tech. 196, 190–196 (2008).

Download references

Acknowledgments

This work was supported by the National Key Basic Research Program of China (Grant No. 2014CB744302), the Specially Funded Program on National Key Scientific Instruments and Equipment Development (Grant No. 2012YQ140005), and the National Nature Science Foundation of China (Grant Nos. 11574401 and 61405259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, H., Zhao, K., Bao, R. et al. Monitoring PM2.5 in the Atmosphere by Using Terahertz Time-Domain Spectroscopy. J Infrared Milli Terahz Waves 37, 929–938 (2016). https://doi.org/10.1007/s10762-016-0283-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0283-8

Keywords

Navigation