Skip to main content
Log in

Temporal Behavior of the Pump Pulses, Residual Pump Pulses, and THz Pulses for D2O Gas Pumped by a TEA CO2 Laser

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Temporal behavior of the pump pulses, residual pump pulses, and THz pulses for optically pumped D2O gas molecules was investigated by using a tunable TEA CO2 laser as the pumping source. The pulse profiles of pump laser pulses, residual pump pulses, and the THz output pulses were measured, simultaneously, at several different gas pressures. For THz pulse, the pulse delay between the THz pulse and the pump pulse was observed and the delay time was observed to increase from 40 to 70 ns with an increase in gas pressure from 500 to 1700 Pa. Both THz pulse broadening and compression were observed, and the pulse broadening effect transformed to the compression effect with increasing the gas pressure. For the residual pump pulse, the full width at half maximum (FWHM) of the main pulse decreased with increasing gas pressure, and the main pulse disappeared at high gas pressures. The secondary pulses were observed at high gas pressure, and the time intervals of about 518 and 435 ns were observed between the THz output pulse and the secondary residual pump pulse at the pressure of 1400 Pa and 1700 Pa, from which the vibrational relaxation time constants of about 5.45 and 5.55 μs Torr were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. M. Cui, W. J. Fu, X. T. Guan, M. Hu, Y. Yan, and S. G. Liu, “Experiment Studies on Two-Dimension Terahertz Raster Scan Imaging,” J. Infrared Milli. Terahz. Waves, 33, 513–521 (2012).

    Article  Google Scholar 

  2. Q. Li, Y. D. Li, S. H. Ding, and Q. Wang, “Terahertz Computed Tomography Using A Continuous-Wave Gas Laser,” J. Infrared Milli. Terahz. Waves, 33, 548–558 (2012).

    Article  Google Scholar 

  3. S. H. Ding, Q. Li, Y. D. Li, and Q. Wang, “Continuous-wave terahertz digital holography by use of a pyroelectric array camera,” Opt. Lett., 36, 1993–1995 (2011).

    Article  Google Scholar 

  4. K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, I. Mehdi, and P. H. Siegel, “An Approach for Sub-Second Imaging of Concealed Objects Using Terahertz (THz) Radar,” J. Infrared Milli. Terahz. Waves, 30, 1297–1307 (2009).

    Google Scholar 

  5. H. Y. Li, Q. Li, K. Xue, Y. P. Zhao, D. Y. Chen, and Q. Wang, “Research into Influence of Gaussian Beam on Terahertz Radar Cross Section of a Conducting Cylinder,” J. Infrared Milli. Terahz. Waves, 34, 289–298 (2013).

    Article  Google Scholar 

  6. A. A. Danylov, T. M. Goyette, J. Waldman, M. J. Coulombe, A. J. Gatesman, R. H. Giles, X. Qian, N. Chandrayan, S. Vangala, K. Termkoa, W. D. Goodhue, and W. E. Nixon, “Terahertz inverse synthetic aperture radar (ISAR) imaging with a quantum cascade laser transmitter,” Opt. Express, 18, 16264–16272 (2010).

    Article  Google Scholar 

  7. J. S. Melinger, Y. Yang, M. Mandehgar, and D. Grischkowsky, “THz detection of small molecule vapors in the atmospheric transmission windows,” Opt. Express, 20, 67886807 (2012).

    Article  Google Scholar 

  8. L. J. Geng, Y. C. Qu, W. J. Zhao, and J. Du, “Highly efficient and compact cavity oscillator for high-power, optically pumped gas terahertz laser,” Opt. Lett., 38, 47934796 (2013).

    Article  Google Scholar 

  9. R. Behn, I. Kjelberg, P. D. Morgan, T. Okada, and M. R. Siegrist, “A high power D2O laser optimized for microsecond pulse duration,” J. Appl. Phys., 54, 2995–3002 (1983).

    Article  Google Scholar 

  10. K. Sasaki, O. Takahashi, N. Takada, M. Nagatsu, T. Tsukishima, T. Okada, S. Okajima, Y. Tsunawaki, S. Sudo, K. N. Sato, K. Kondo, H. Arimoto, and K. I. Sato “Injection seeding for single-mode operation in an optically pumped high-power D2O laser,” Int. J. Infrared Millim Waves, 16, 2133–2146 (1995).

    Article  Google Scholar 

  11. L. J. Geng, D. M. Ren, W. J. Zhao, Y. C. Qu, H. Y. Chen, and J. Du, “High efficient, intense and compact pulsed D2O terahertz laser pumped with a TEA CO2 laser,” J. Infrared Milli. Terahz. Waves, 34, 780–786 (2013).

    Article  Google Scholar 

  12. Z. X. Jiu, D. L. Zuo, L. A. Miao, and Z. H. Cheng, “An efficient high-energy pulsed NH3 terahertz laser,” J. Infrared Milli. Terahz. Waves, 31, 1422–1426 (2010).

    Article  Google Scholar 

  13. Z. Drozdowicz, R. J. Temkin, and B. Lax, “Laser pumped molecular lasers-Part I: Theory,” IEEE J. Quantum Electron., 15, 170–178 (1979).

    Article  Google Scholar 

  14. M. R. Siegrist, M. R. Green, P. D. Morgan, I. Kjelberg, and R. L. Watterson, “Parametric study of an optically pumped far infrared oscillator,” J. Appl. Phys., 51, 3531–3535 (1980).

    Article  Google Scholar 

  15. K. Sasaki, T. Tsukishima, and M. Nagatsu, “Computer simulation of an optically pumped 385-μm D2O laser based on the semiclassical laser theory,” Opt. Lett., 19, 1846–1848 (1994).

    Article  Google Scholar 

  16. Z. H. He, Y. P. Zhang, H. Y. Zhang, Q. M. Zhang, J. H. Liao, Y. H. Zhou, S. H. Liu, and X. Z. Luo, “Study of Optimal Cavity Parameter in Optically Pumped D2O Gas Terahertz Laser,” J. Infrared Milli. Terahz. Waves, 31, 551–558 (2010).

    Google Scholar 

  17. R. L. Sheffield, K. Boyer, and A. Javan, “Study of vibrational and rotational relaxations in D2O,” Opt. Lett., 5(1), 10–11 (1980).

    Article  Google Scholar 

  18. T. Okada, R. Behn, M. A. Dupertuis, P. D. Morgan, and M. R. Siegrist, “Numerical analysis of an optically pumped D2O far infrared laser,” J. Appl. Phys., 54(6), 2987–2994 (1983).

    Article  Google Scholar 

  19. N. Matsunaga and A. Nagashima, “Saturation vapor pressure and critical constants of H2O, D2O, T2O, and their isotopic mixtures,” Int. J. Thermophys, 8(6), 681–694 (1987).

    Article  Google Scholar 

  20. G. F. D. Levy, “Forward stimulated Raman scattering (385 μm) in a D2O laser,” Opt. Commun., 38(2), 143–148 (1981).

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Natural Science Foundation of China (No. U1304507, 51027006, 61571403), Foundation of Henan Educational Committee (16A140020), and Doctor’s Innovation Fund of Zhengzhou University of Light Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijie Geng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, L., Zhang, Z., Zhai, Y. et al. Temporal Behavior of the Pump Pulses, Residual Pump Pulses, and THz Pulses for D2O Gas Pumped by a TEA CO2 Laser. J Infrared Milli Terahz Waves 37, 721–728 (2016). https://doi.org/10.1007/s10762-016-0270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0270-0

Keywords

Navigation