Skip to main content
Log in

Room-Temperature AlGaN/GaN Terahertz Plasmonic Detectors with a Zero-Bias Grating

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this paper, we present sensitivity measurement as well as measured and calculated absorption spectra for AlGaN/GaN THz plasmonic detector made of a metallic grating in-between two ohmic contacts. Detectors with different grating patterns have been fabricated and their sensitivity, reaching 1.9 μA/W at 77 K and 0.7 μA/W at 300 K, measured with a voltage applied between the ohmic contacts. It is the first time that such a detector shows THz detection with no voltage applied on the grating, namely with a bidimensional electron gas (2DEG) having a homogeneous electron density. These results are consistent with detection by drag-effect rectification. Measurements held between 0.648 and 0.690 THz show that the dependence of the sensitivity on the frequency follows the absorption spectrum, indicating that absorption is a crucial step in the detection process. Further simulations of absorption spectra show the tunability offered by such detector and allow us to predict frequency behavior for grating-biased detectors as well, in which the rectification is mainly governed by ratchet effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Cao, A.-S. Grimault-Jacquin, F. Aniel, Applied Physics A, 109 (4), 985 (2012).

  2. L. Cao, A.S. Grimault-Jacquin, N. Zerounian, F. Aniel, Infrared Physics and Technology 63, 157 (2014).

  3. A. Malekabadi, S. Charlebois, D. Deslandes, F. Boone, S. Member, IEEE Transactions on Terahertz Science and Technology 4(4), 447 (2014).

  4. M. Dyakonov, M. Shur, S. Petersburg, Physical Review Letters 71(15), 2465 (1993).

  5. J.Q. Lu, M. Shur, J. Hesler, R. Weikle, IEEE Electron Device Letters 19(10), 373 (1998).

  6. W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Lusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, M.S. Shur, Applied Physics Letters 85(4), 675 (2004).

  7. A. Di Gaspare, R. Casini, V. Foglietti, V. Giliberti, E. Giovine, M. Ortolani, Applied Physics Letters 100(20), 203504 (2012).

  8. X.G. Peralta, S.J. Allen, M.C.Wanke, N.E. Harff, J.a. Simmons, M.P. Lilly, J.L. Reno, P.J. Burke, J.P. Eisenstein, Applied Physics Letters 81(9), 1627 (2002).

  9. D. Coquillat, S. Nadar, F. Teppe, N. Dyakonova, S. Boubanga-Tombet,W. Knap, T. Nishimura, T. Otsuji, Y.M. Meziani, G.M. Tsymbalov, V.V. Popov, Optics express 18(6), 6024 (2010).

  10. Y. Kurita, G. Ducournau, D. Coquillat, A. Satou, K. Kobayashi, S. Boubanga Tombet, Y.M. Meziani, V.V. Popov, W. Knap, T. Suemitsu, T. Otsuji, Applied Physics Letters 104(25), 251114 (2014).

  11. S. Boubanga-Tombet, Y. Tanimoto, A. Satou, T. Suemitsu, Y.Wang, H. Minamide, H. Ito, D.V. Fateev, V.V. Popov, T. Otsuji, Applied Physics Letters 262104, 1 (2014).

  12. W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.Q. Lu, R. Gaska, M.S. Shur, G. Simin, X. Hu, M.A. Khan, C.a. Saylor, L.C. Brunel, Journal of Applied Physics 91(11), 9346 (2002).

  13. J.D. Sun, H. Qin, R.A. Lewis, X.X. Yang, Y.F. Sun, Z.P. Zhang, X.X. Li, X.Y. Zhang, Y. Cai, D.M. Wu, B.S. Zhang, aplied physics letters 106, 031119 (2015).

  14. T. Tanigawa, T. Onishi, S. Takigawa, T. Otsuje, S. Company, P. Corporation, T. Tanaka, in device research conference, vol. 024519 (IEEE, south bend, IN, 2010), vol. 024519, pp. 167168 (2010).

  15. A.V. Muravjov, D.B. Veksler, V.V. Popov, O.V. Polischuk, N. Pala, X. Hu, R. Gaska, H. Saxena, R.E. Peale, M.S. Shur, Applied Physics Letters 96(4), 042105 (2010).

  16. (V.V. Popov, Journal of Infrared, Millimeter, and Terahertz Waves 32(10), 1178 (2011)).

  17. H. Spisser, A.S. Grimault-Jacquin, N. Zerounian, A. Aassime, L. Cao, F. Boone, H. Maher, Y. Cordier, F. Aniel, in Global Symposium on Millimeter-Waves, Montreal (2015).

  18. V.V. Popov, Applied Physics Letters 102(25), 253504 (2013).

  19. G.R. Aizin, V.V. Popov, O.V. Polischuk, Applied Physics Letters 89(14), 143512 (2006).

  20. I. Rozhansky, V. Kachorovskii, M. Shur, Physical Review Letters 114(24), 246601 (2015).

  21. O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, a.J. Sierakowski, W.J. Schaff, L.F. Eastman, R. Dimitrov, A. Mitchell, M. Stutzmann, Journal of Applied Physics 87(1), 334 (2000).

  22. X.G. He, D.G. Zhao, D.S. Jiang, Chinese Physics B 24(6), 067301 (2015).

  23. T. Watanabe, S.A. Boubanga-tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y.M. Meziani, Y. Wang, H. Minamide, IEEE sensors journsl 13(1), 89 (2013).

  24. M. Sirbu, S.B.P. Lepaul, F. Aniel, IEEE Transactions on Microwave Theory and Techniques 53(9), 2991 (2005).

  25. D.V. Fateev, V.V. Popov, T. Otsuji, Y.M. Meziani, in Metamaterials, 1, pp. 532534 (2012).

Download references

Acknowledgments

The authors acknowledge the support from GANEX (ANR-11-LABX-0014). GANEX belongs to the public funded Investissements d’Avenir program managed by the French ANR agency. This work was partly supported by the French RENATECH network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Spisser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spisser, H., Grimault-Jacquin, AS., Zerounian, N. et al. Room-Temperature AlGaN/GaN Terahertz Plasmonic Detectors with a Zero-Bias Grating. J Infrared Milli Terahz Waves 37, 243–257 (2016). https://doi.org/10.1007/s10762-015-0224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0224-y

Keywords

Navigation