Skip to main content
Log in

Parallel-Plate Waveguide Terahertz Time Domain Spectroscopy for Ultrathin Conductive Films

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Development of techniques for characterization of extremely thin films is an important challenge in terahertz (THz) science and applications. Spectroscopic measurements of materials on the nanometer scale or of atomic layer thickness (2D materials) require a sufficient terahertz wave–matter interaction length, which is challenging to achieve in conventional transmission geometry. Waveguide-based THz spectroscopy offers an alternative method to overcome this problem. In this paper, we investigate a new parallel-plate waveguide (PPWG) technique for measuring dielectric properties of ultrathin gold films, in which we mount the thin film sample at the center of the waveguide. We discuss a model of THz dielectric parameter extraction based on waveguide theory and analyze the response of thin films for both transverse magnetic (TM) and transverse electric (TE) waveguide modes. In contrast to other waveguide methods, our approach enables comparison of the material response with different electromagnetic field distributions without significantly changing the experimental setup. As a result, we demonstrate that TE modes have a better sensitivity to the properties of the thin film. For prototype test samples, optical parameters extracted using our method are in good agreement with literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ren, L. et al. Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene. Nano Lett. 12, 3711–3715 (2012).

    Article  Google Scholar 

  2. Ge, S. et al. Coherent longitudinal acoustic phonon approaching THz frequency in multilayer molybdenum disulphide. Sci. Rep. 4, (2014).

  3. Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS nano 7, 2898–2926 (2013).

    Article  Google Scholar 

  4. Gao, W. et al. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. Nano Lett. 14, 1242–1248 (2014).

    Article  Google Scholar 

  5. Sensale-Rodriguez, B. et al. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 3, 780 (2012).

    Article  Google Scholar 

  6. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater 12, 754–759 (2013).

    Article  Google Scholar 

  7. H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka. Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses. Jpn. J. Appl. Phys. 43, L1287 (2004).

    Article  Google Scholar 

  8. Zhan, H. et al. The metal-insulator transition in VO2 studied using terahertz apertureless near-field microscopy. Appl. Phys. Lett. 91, 162110–162110–3 (2007).

  9. Melinger, J. S., Laman, N., Harsha, S. S. & Grischkowsky, D. Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide. Appl. Phys. Lett. 89, 251110 (2006).

    Article  Google Scholar 

  10. Laman, N., Harsha, S. S., Grischkowsky, D. & Melinger, J. S. High-resolution waveguide THz spectroscopy of biological molecules. Biophys. J 94, 1010–1020 (2008).

    Article  Google Scholar 

  11. Zhang, J. & Grischkowsky, D. Waveguide terahertz time-domain spectroscopy of nanometer water layers. Opt. Lett. 29, 1617–1619 (2004).

    Article  Google Scholar 

  12. Astley, V., Reichel, K. S., Jones, J., Mendis, R. & Mittleman, D. M. Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities. Appl. Phys. Lett. 100, 231108 (2012).

    Article  Google Scholar 

  13. Reichel, K. S., Iwaszczuk, K., Jepsen, P. U., Mendis, R. & Mittleman, D. M. In situ spectroscopic characterization of a terahertz resonant cavity. Optica, 1, 272-275 (2014).

  14. Walther, M. et al. Terahertz conductivity of thin gold films at the metal-insulator percolation transition. Phys. Rev. B 76, 125408 (2007).

    Article  Google Scholar 

  15. Tsankov, M. A. Permittivity measurement of a thin slab centrally located in a rectangular waveguide. J. Phys. E: Sci. Instr. 8, 963 (1975).

    Article  Google Scholar 

  16. Butterweck, H. Mode filters for oversized rectangular waveguides. IEEE Trans. Microw. Theory Tech. 16, 274–281 (1968).

    Article  Google Scholar 

  17. Maloney, J. G. & Smith, G. S. The efficient modeling of thin material sheets in the finite-difference time-domain (FDTD) method. IEEE Trans. Antennas Propag. 40, 323–330 (1992).

    Article  Google Scholar 

  18. Dressel, M. & Grüner, G. Electrodynamics of solids: optical properties of electrons in matter. (Cambridge University Press, 2002).

  19. Gallot, G., Jamison, S. P., McGowan, R. W. & Grischkowsky, D. Terahertz waveguides. J. Opt. Soc. Am. B 17, 851–863 (2000).

    Article  Google Scholar 

  20. Mendis, R. & Mittleman, D. M. An investigation of the lowest-order transverse-electric (TE 1) mode of the parallel-plate waveguide for THz pulse propagation. J. Opt. Soc. Am. B 26, A6–A13 (2009).

    Article  Google Scholar 

  21. Ramo, S., Whinnery, J. R. & Van Duzer, T. Fields and waves in communication electronics. (J. Wiley, 1965).

  22. Smith, N. V. Classical generalization of the Drude formula for the optical conductivity. Phys. Rev. B 64, 155106 (2001).

    Article  Google Scholar 

  23. Liu, K., Xu, J., Yuan, T. & Zhang, X.-C. Terahertz radiation from InAs induced by carrier diffusion and drift. Phys. Rev. B 73, 155330 (2006).

    Article  Google Scholar 

  24. Gatesman, A. J., Giles, R. H. & Waldman, J. High-precision reflectometer for submillimeter wavelengths. J. Opt. Soc. Am. B 12, 212–219 (1995).

    Article  Google Scholar 

  25. Thoman, A., Kern, A., Helm, H. & Walther, M. Nanostructured gold films as broadband terahertz antireflection coatings. Phys. Rev. B 77, 195405 (2008).

    Article  Google Scholar 

  26. Liu, J., Mendis, R. & Mittleman, D. M. The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides. Appl. Phys. Lett. 98, 231113 (2011).

    Article  Google Scholar 

  27. Mendis, R. Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides. Opt. Lett. 31, 2643–2645 (2006).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 25249049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Razanoelina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razanoelina, M., Kinjo, R., Takayama, K. et al. Parallel-Plate Waveguide Terahertz Time Domain Spectroscopy for Ultrathin Conductive Films. J Infrared Milli Terahz Waves 36, 1182–1194 (2015). https://doi.org/10.1007/s10762-015-0194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0194-0

Keywords

Navigation