Skip to main content
Log in

Compressed Sensing in a Fully Non-Mechanical 350 GHz Imaging Setting

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We investigate a single-pixel camera (SPC) that relies on non-mechanical scanning with a terahertz (THz) spatial light modulator (SLM) and Compressed Sensing (CS) for image generation. The camera is based on a 350 GHz multiplier source and a Golay cell detector. The SLM consists of a Germanium disc, which is illuminated by a halogen lamp. The light of the lamp is transmitted through a thin-film transistor (TFT) liquid crystal display (LCD). This enables the generation of light patterns on the Germanium disc, which in turn produce reflecting patterns for THz radiation. Using up to 1000 different patterns the pseudo-inverse reconstruction algorithm and the CS algorithm CoSaMP are evaluated with respect to image quality. It is shown that CS allows a reduction of the necessary measurements by a factor of three without compromising the image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Heinz, T. May, D. Born, G. Zieger, K. Peiselt, A. Brömel, S. Anders, V. Zakosarenko, T. Krause, A. Krüger, M. Schulz, and H.-G. Meyer, “Development of passive submillimeter-wave video imaging systems,” in SPIE Defense, Security, and Sensing: SPIE, 2013, pp. 87150E.

  2. Jinshan Ding, M. Kahl, O. Loffeld, and P. H. Bolivar, “THz 3-D Image Formation Using SAR Techniques: Simulation, Processing and Experimental Results,” IEEE Trans. THz Sci. Technol, vol. 3, no. 5, pp. 606–616, 2013.

    Article  Google Scholar 

  3. A. Luukanen, T. Kiuru, M. M. Leivo, A. Rautiainen, and J. Varis, “Passive three-colour submillimetre-wave video camera,” in SPIE Defense, Security, and Sensing: SPIE, 2013, pp. 87150F.

  4. S. S. Ahmed, A. Schiessl, and L.-P. Schmidt, “A Novel Fully Electronic Active Real-Time Imager Based on a Planar Multistatic Sparse Array,” IEEE Trans. Microwave Theory Techn, vol. 59, no. 12, pp. 3567–3576, 2011.

    Article  Google Scholar 

  5. S. Augustin and H.-W. Hübers, “Phase-Sensitive Passive Terahertz Imaging at 5-m Stand-Off Distance,” IEEE Trans. THz Sci. Technol, vol. 4, no. 4, pp. 418–424, 2014.

    Article  Google Scholar 

  6. N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D Terahertz Imaging With a Quantum-Cascade Laser and a Scanning Mirror,” IEEE Trans. THz Sci. Technol, vol. 3, no. 5, pp. 617–624, 2013.

    Article  Google Scholar 

  7. I. Amenabar, F. Lopez, and A. Mendikute, “In Introductory Review to THz Non-Destructive Testing of Composite Mater,” J Infrared Milli Terahz Waves, vol. 34, no. 2, pp. 152–169, 2013.

    Article  Google Scholar 

  8. C. S. Joseph, A. N. Yaroslavsky, V. A. Neel, T. M. Goyette, and R. H. Giles, “Continuous wave terahertz transmission imaging of nonmelanoma skin cancers,” Lasers Surg. Med, vol. 43, no. 6, pp. 457–462, 2011.

    Article  Google Scholar 

  9. F. C. De Lucia, “The submillimeter: A spectroscopist’s view,” Journal of Molecular Spectroscopy, vol. 261, no. 1, pp. 1–17, 2010.

    Article  Google Scholar 

  10. I. R. Medvedev, C. F. Neese, G. M. Plummer, and F. C. De Lucia, “Submillimeter spectroscopy for chemical analysis with absolute specificity,” Opt. Lett, vol. 35, no. 10, p. 1533, 2010.

    Article  Google Scholar 

  11. J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48–2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum, vol. 82, no. 9, p. 93105, 2011.

    Article  Google Scholar 

  12. R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett, vol. 99, no. 14, p. 141112, 2011.

    Article  Google Scholar 

  13. H.-W. Hübers, R. Eichholz, S. G. Pavlov, and H. Richter, “High Resolution Terahertz Spectroscopy with Quantum Cascade Lasers,” J Infrared Milli Terahz Waves, vol. 34, no. 5-6, pp. 325–341, 2013.

    Article  Google Scholar 

  14. F. Ospald, W. Zouaghi, R. Beigang, C. Matheis, J. Jonuscheit, B. Recur, J.-P. Guillet, P. Mounaix, W. Vleugels, P. V. Bosom, L. V. González, I. López, R. M. Edo, Y. Sternberg, and M. Vandewal, “Aeronautics composite material inspection with a terahertz time-domain spectroscopy system,” Opt. Eng, vol. 53, no. 3, p. 31208, 2014.

    Article  Google Scholar 

  15. N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett, vol. 86, no. 5, p. 54105, 2005.

    Article  Google Scholar 

  16. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express, vol. 11, no. 20, p. 2549, 2003.

    Article  Google Scholar 

  17. Y. C. Shen, L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. Cunningham, Parrott, E. P. J, J. A. Zeitler, L. F. Gladden, E. H. Linfield, and A. G. Davies, “Terahertz pulsed spectroscopic imaging using optimized binary masks,” Appl. Phys. Lett, vol. 95, no. 23, p. 231112, 2009.

    Article  Google Scholar 

  18. D. J. Benford, S. H. Moseley, G. J. Stacey, R. A. Shafer, J. G. Staguhn, R. K. Melugin, and H.-P. Roeser, “Far-infrared imaging spectroscopy with SAFIRE on SOFIA,” in SPIE Astronomical Telescopes and Instrumentation: SPIE, 2003, pp. 105–114.

  19. TeraSense. Available: http://terasense.com/.

  20. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express, vol. 19, no. 8, p. 7827, 2011.

    Article  Google Scholar 

  21. N. Oda, T. Ishi, T. Morimoto, T. Sudou, H. Tabata, S. Kawabe, K. Fukuda, A. W. M. Lee, and Q. Hu, “Real-time transmission-type terahertz microscope with palm size terahertz camera and compact quantum cascade laser,” in SPIE Terahertz Emitters, Receivers, and Applications III: SPIE, 2012, pp. 84960Q.

  22. Infrared Laboratories. Available: http://www.infraredlaboratories.com/Bolometers.shtml.

  23. A. L. Woodcraft, M. I. Hollister, D. Bintley, M. A. Ellis, X. Gao, W. S. Holland, M. J. MacIntosh, P. A. R. Ade, J. S. House, C. L. Hunt, R. V. Sudiwala, W. D. Duncan, G. C. Hilton, K. D. Irwin, C. D. Reintsema, C. C. Dunare, W. Parkes, A. J. Walton, J. B. Kycia, M. Amiri, B. Burger, M. Halpern, J. Zmuidzinas, and S. Withington, “Characterization of a prototype SCUBA-2 1280-pixel submillimetre superconducting bolometer array,” in SPIE Astronomical Telescopes and Instrumentation: SPIE, 2006, pp. 62751F.

  24. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, Ting Sun, K. F. Kelly, and R. G. Baraniuk, “Single-Pixel Imaging via Compressive Sampling,” IEEE Signal Process. Mag, vol. 25, no. 2, pp. 83–91, 2008.

    Article  Google Scholar 

  25. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett, vol. 93, no. 12, p. 121105, 2008.

    Article  Google Scholar 

  26. S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett, vol. 37, no. 8, pp. 1391–1393, 2012.

    Article  Google Scholar 

  27. D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express, vol. 21, no. 10, pp. 12507–12518, 2013.

    Article  Google Scholar 

  28. L.-J. Cheng and L. Liu, “Optical modulation of continuous terahertz waves towards cost-effective reconfigurable quasi-optical terahertz components,” Opt. Express, vol. 21, no. 23, pp. 28657–28667, 2013.

    Article  Google Scholar 

  29. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nature Photon, vol. 8, no. 8, pp. 605–609, 2014.

    Article  Google Scholar 

  30. M. A. Herman and T. Strohmer, “General Deviants: An Analysis of Perturbations in Compressed Sensing,” Selected Topics in Signal Processing, IEEE Journal, vol. 4, no. 2, pp. 342–349, 2010.

    Article  Google Scholar 

  31. Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “Sensitivity to Basis Mismatch in Compressed Sensing,” IEEE Transactions on Signal Processing, vol. 59, no. 5, pp. 2182–2195, 2011.

    Article  MathSciNet  Google Scholar 

  32. P. Jung and P. Walk, “Sparse Model Uncertainties in Compressed Sensing with Application to Convolutions and Sporadic Communication,” to appear in Compressed Sensing and its Applications, H. Boche, R. Calderbank, G. Kutyniok, and J. Vybiral, Eds.: Springer, 2014, pp. 1–29.

  33. E. J. Candès and T. Tao, “Decoding by Linear Programming,” IEEE Trans. Inform. Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  34. E. J. Candès, “The restricted isometry property and its implications for compressed sensing,” Compte Rendus de l’Academie des Sciences, vol. 346, no. 9, pp. 589–592, 2008.

    MATH  Google Scholar 

  35. T. T. Cai and A. Zhang, “Sharp RIP bound for sparse signal and low-rank matrix recovery,” Applied and Computational Harmonic Analysis, vol. 35, no. 1, pp. 74–93, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  36. E. J. Candès, Y. C. Eldar, D. Needell, and P. Randall, “Compressed sensing with coherent and redundant dictionaries,” Applied and Computational Harmonic Analysis, vol. 31, no. 1, pp. 59–73, 2010.

    Article  Google Scholar 

  37. D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,” Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 301–321, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Elad, Sparse and redundant representations: From theory to applications in signal and image processing. New York: Springer, 2010.

    Book  Google Scholar 

  39. U. Nakarmi and N. Rahnavard, “BCS: Compressive sensing for binary sparse signals,” in IEEE Military Communications Conference, 2012 - MILCOM 2012, 2012, pp. 1–5.

  40. Z. He, T. Ogawa, and M. Haseyama, “The simplest measurement matrix for compressed sensing of natural images,” in Image Processing (ICIP), 2010 17th IEEE International Conference on, 2010, pp. 4301–4304.

Download references

Acknowledgements

The research presented here was partly funded by the European Metrology Research Program (EMRP – Project NEW07 Microwave and terahertz metrology for homeland security). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

S. Augustin and J. Hieronymus gratefully acknowledge support by the Helmholtz Research School on Security Technologies (HRSST).

All authors are grateful to Alessandro Maturilli for conducting the spectrometer measurements presented in Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Augustin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augustin, S., Hieronymus, J., Jung, P. et al. Compressed Sensing in a Fully Non-Mechanical 350 GHz Imaging Setting. J Infrared Milli Terahz Waves 36, 496–512 (2015). https://doi.org/10.1007/s10762-014-0141-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-014-0141-5

Keywords

Navigation