Skip to main content
Log in

A New 2-Dimensional Millimeter Wave Radiation Imaging System Based on Finite Difference Regularization

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Synthetic aperture imaging radiometer (SAIR) has the potential to meet the spatial resolution requirement of passive millimeter remote sensing from space. A new two-dimensional (2-D) imaging radiometer at millimeter wave (MMW) band is described in this paper; it uses a one-dimensional (1-D) synthetic aperture digital radiometer (SADR) to obtain an image on one dimension and a rotary platform to provide a scan on the second dimension. Due to the ill-posed inverse problem of SADR, we proposed a new reconstruction algorithm based on Finite Difference (FD) regularization to improve brightness temperature images. Experimental results show that the proposed 2-D MMW radiometer can give the brightness temperature images of natural scenes and the FD regularization reconstruction algorithm is able to improve the quality of brightness temperature images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. L. Thomas and M. Christian, “Stereoscopic passive millimeter-wave imaging and ranging,” IEEE Trans. on Microwave Theory and Tech. 53 (8), 2594-2599 (2005).

    Article  Google Scholar 

  2. C. S. Ruf, C. T. Swift, A. B. Tanner, and D. M. Le Vine, “Interferometric synthetic aperture radiometry for the remote sensing of the Earth,” IEEE Trans. Geosci. Remote Sen. 26 (5), 597-611 (1988).

    Article  Google Scholar 

  3. Y. H. Kerr, P. Waldteufel, J. P. Wigneron, F. Cabot, J. Boutin, M. J. Escorihuela, J. Font, N. Reul, C. Gruhier, S. Juglea, S. Delwart, M. Drinkwater, A. Hahne, and M. Martı´n-Neira, “The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle,” Proc. of the IEEE 98(5), 666-687 (2010)

  4. A. B. Tanner and C. T. Swift, “Calibration of a synthetic aperture. Radiometer,” IEEE Trans. GeoSci. Remote Sen. 31(1), 257-267 (1993).

    Article  Google Scholar 

  5. M. Martín-Neira, I. Cabeza, C. Pérez, M. A. Palacios, M. A. Guijarro, S. Ribó, I. Corbella, S. Blanch, F. Torres, N. Duffo, V. González, S. Beraza, A. Camps, M. Vall-llossera, S. Tauriainen, J. Pihlflyckt, J. P. González, and F.Martin-Porqueras, “AMIRAS-An Airborne MIRAS Demonstrator,” IEEE Trans. Geosci. Remote Sens. 46 (3), 705-716 (2008).

  6. W. M. Waters and B. R. Jarrett, “Bandpass signal sampling and coherent detection,” IEEE Trans. on Aerospace and Electronic Systems 18 (4), 731-736 (1982).

    Article  Google Scholar 

  7. F. Torres, A. Camps, J. Bará, I. Corbella, and R. Ferrero, “On-board phase and modulus calibration of large aperture synthesis radiometers: Study applied to MIRAS,” IEEE Trans. Geosci. Remote Sens. 34(7), 1000–1009 (1996).

    Article  Google Scholar 

  8. E. Anterrieu, “A resolving matrix approach for synthetic aperture imaging radiometers,” IEEE Trans. Geosci. Remote Sensing 42 (8), 1649-1656 (2004).

    Article  Google Scholar 

  9. M. Migliaccio and A. Gambardella, “Microwave Radiometer Spatial Resolution Enhancement,” IEEE Trans. Geosci. Remote Sens. 43 (5), 1159-1169 (2005).

    Article  Google Scholar 

  10. F. Lenti, F Nunziata, M. Migliaccio and G. Rodriguez, “Two-Dimensional TSVD to enhance the spatial resolution of radiometer data,” IEEE Trans. Geosci. Remote Sens. 52(5), 2450-2458 (2014).

    Article  Google Scholar 

  11. A. Gambardella and M. Migliaccio, “On the superresolution of microwave scanning radiometer measurements,” IEEE Geosci. Remote Sensing Lett. 5(4), 796-800 (2008).

    Article  Google Scholar 

  12. X. Zhou, H. Sun, J. He, and X. Lu, “NUFFT-Based Iterative Reconstruction Algorithm for Synthetic Aperture Imaging Radiometers,” IEEE Geosci. Remote Sensing Lett. 6 (2), 273-276 (2009).

    Article  Google Scholar 

  13. A. Camps, M. Vall-llossera, I. Corbella, N. Duffo, and F. Torres, “Improved image reconstruction algorithms for aperture synthesis radiometers,” IEEE Trans. Geosci. Remote Sens. 46 (1), 146-158 (2008).

    Article  Google Scholar 

  14. M. Piles, A. Camps, M. Vall-llossera, and M. Talone, “Spatial-Resolution Enhancement of SMOS Data: A Deconvolution-Based Approach,” IEEE Trans. Geosci. Remote Sens. 47(7), 2182-2192 (2009).

    Article  Google Scholar 

  15. F. Lenti, F Nunziata, C. Estatico and M. Migliaccio, “On the Spatial Resolution Enhancement of Microwave Radiometer Data in Banach Spaces,” IEEE Trans. Geosci. Remote Sens. 52(3), 1834-1842 (2014).

    Article  Google Scholar 

  16. M. Lustig, D. Donoho, and J. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Resonance in Med. 58(6), 1182-1195 (2007).

    Article  Google Scholar 

  17. K. Chen, Y. T. Zhu, X. C. Guo, W. Guo, Q. X. Li, L. Q. Gui, and W. Ni, “Design of 8mm-band Aperture Synthetic Radiometer and Imaging Experiment,” Int. J. Infared Millim. Waves 31 (3), 724-734 (2010).

    Google Scholar 

  18. I. Corbella, N. Duffo, M. Vall-llossera, A. Camps, and F. Torres, “The visibility function in interferometric aperture synthesis radiometry,” IEEE Trans. Geosci. Remote Sens. 42(8), 1677–1682 (2004).

    Article  Google Scholar 

  19. D. M. Le Vine, A. J. Griffis, C. T. Swift, and T.J. Jackson, “ESTAR: A Synthetic Aperture Microwave Radiometer for Remote Sensing Applications,” Proc. of the IEEE 82 (12), 1787-1801 (1994).

    Article  Google Scholar 

  20. A. Cichocki and S.-I. Amari, Adaptive Blind Signal and Image Processing-Learning Algorithms and Applications. J. Wiley, 2002.

  21. A. Camps, “Application of interferometric radiometry to earth observation,” Ph.D. dissertation, Univ. Politècnica de Catalunya, Barcelona, Spain, 1996.

  22. V. M. Patel, R. Maleh, A. C. Gilbert, and R. Chellappa, “Gradient based image recovery methods from incomplete fourier measurements,” IEEE Transactions Image Processing 21(1), 94-105 (2012).

    Article  MathSciNet  Google Scholar 

  23. J. F. Yang, Y. Zhang, and W. Yin, “A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data,” IEEE Journal of Selected Topics in Signal Processing, Special Issue on Compressive Sensing 4 (2), 288-297 (2010).

    Article  Google Scholar 

  24. http://www.caam.rice.edu/~optimization/L1/TVAL3/.

Download references

Acknowledgement

The authors would like to thank the anonymous reviewers and Editorial Office for comments that improved the quality and clarity of this manuscript and also would like to thank Dr. Yiqiang Yu for his enthusiastic aids. The work was supported by the National Nature Science Foundation of China (No. 61162015) and (No. 31101081) and by the Special Fund Project for Visiting Scholar of Young and Middle-Aged Teachers Development Plan in Jiangxi Province College and University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Liu, Y., Chen, S. et al. A New 2-Dimensional Millimeter Wave Radiation Imaging System Based on Finite Difference Regularization. J Infrared Milli Terahz Waves 36, 368–379 (2015). https://doi.org/10.1007/s10762-014-0133-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-014-0133-5

Keywords

Navigation