Skip to main content
Log in

Characterization of in-situ terahertz detection by optical interaction in a periodically poled stoichiometric lithium tantalate nonlinear crystal

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Terahertz waves are generated using a femtosecond laser pulse in a periodically poled stoichiometric lithium tantalate crystal and simultaneously detected via a non-collinear optical parametric interaction inside the same crystal. Real time up-conversion signal between the generated THz and an optic probe pulses is measured depending on the beam overlapped conditions using a general silicon-photodiode for the THz detection. The non-collinear geometry is to facilitate manipulated property of the position-dependent bandwidth at narrow and broad bandwidths of 45 GHz and 3.3 THz, respectively at the one crystal. Furthermore, an aperture effect at the detection part is characterized as the function of size and position owing to the spatial distribution of the frequency conversion signal and it is applied in optimization of the in-situ detection scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444, 597 (2006).

    Article  Google Scholar 

  2. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, Phys. Rev. Lett. 97, 176805 (2006).

    Article  Google Scholar 

  3. S. Matsuura, M. Tani, H. Abe, K. Sakai, H. Ozeki, and S. Saito, J. Mol. Spectrosc. 187, 97 (1998).

    Article  Google Scholar 

  4. K. Kawase, Opt. Photon. News 15, 34 (2004).

    Article  Google Scholar 

  5. Y. Kawano, T. Fuse, S. Toyokawa, T. Uchida, and K. Ishibashi, J. Appl. Phys. 103, 034307 (2008).

    Article  Google Scholar 

  6. T. Dekorsy, V. A. Yakovlev, W. Seidel, M. Helm, and F. Keilmann, Phys. Rev. Lett. 90, 055508 (2003).

    Article  Google Scholar 

  7. J. Federici, and L. Moeller, J. Appl. Phys. 107, 111101 (2010).

    Article  Google Scholar 

  8. J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, Opt. Express 19, 19114 (2011).

    Article  Google Scholar 

  9. J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, J. Appl. Phys. 104, 033111 (2008).

    Article  Google Scholar 

  10. Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, Appl. Phys. Lett. 99, 071102 (2011).

    Article  Google Scholar 

  11. Y. Liu, S.-G. Park, and A. M. Weiner, Opt. Lett. 21, 1762 (1996).

    Article  Google Scholar 

  12. A. G. Stepanov, J. Hebling, J. Kuhl, Opt. Express 12, 4650 (2004)

    Article  Google Scholar 

  13. A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, Phys. Rev. Lett. 103, 095003 (2009).

    Article  Google Scholar 

  14. S. Bielawski, C. Evain, T. Hara, M. hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, Nat. Phys. 4, 390 (2008).

    Article  Google Scholar 

  15. T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, and M. H. Dunn, Opt. Express 14, 1582 (2006).

    Article  Google Scholar 

  16. N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C. S. Kee, D. K. Ko, J. Lee, K. Kitamura, and S. Takekawa, Appl. Phys. Lett. 93, 041104 (2008).

    Article  Google Scholar 

  17. N. E. Yu, K. S. Lee, D. K. Ko, C. Kang, S. Takekawa, and K. Kitamura, Opt. Commun. 284, 1395 (2011).

    Article  Google Scholar 

  18. N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, Appl. Phys. Express 7, 012101 (2014).

    Article  Google Scholar 

  19. K. Kawase, J.-I. Shikata, H. Minamide, K. Imai, and H. Ito, Appl. Opt. 40, 1423 (2001).

    Article  Google Scholar 

  20. N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, Nat. Mater. 1, 95 (2002).

    Article  Google Scholar 

  21. G. H. Ma, S. H. Tang, G. K. Kitaeva, and I. I. Naumova, J. Opt. Soc. Am. B 23, 81 (2006).

    Article  Google Scholar 

  22. G. H. Ma, Q. B. Zhu, G. Kh. Kitaeva, and I. I. Naumuva, Opt. Commun. 273, 549 (2007).

    Article  Google Scholar 

  23. G. K. Kitaeva, Phys. Rev. A 76, 043841 (2007).

    Article  Google Scholar 

  24. W. M. Liu, A. N. Tuchak, Y. H. Yan, G. Kh. Kitaeva, and S. H. Tang, Opt. Lett. 34, 2027 (2009).

    Article  Google Scholar 

  25. I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, Appl. Phys. B 96, 423 (2009).

    Article  Google Scholar 

  26. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, Nat. Photonics 3, 152 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (R15-2008-006-02001-0), (No. 2010-0009146) and also by the Asian Laser Center Program provided by the GIST. Author (N. E. Yu) was also partially supported by the Happy tech. program through the NRF (No. 2011-0020956).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Ei Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KS., Ko, DK., Takekawa, S. et al. Characterization of in-situ terahertz detection by optical interaction in a periodically poled stoichiometric lithium tantalate nonlinear crystal. J Infrared Milli Terahz Waves 35, 833–839 (2014). https://doi.org/10.1007/s10762-014-0091-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-014-0091-y

Keywords

Navigation