Skip to main content
Log in

Hot Electrons in THz Quantum Cascade Lasers

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We compare the electrical power dependence of the lattice temperature and the electronic temperature of GaAs/AlxGa1-xAs THz quantum cascade lasers (QCLs) with different active region schemes, as extracted by the analysis of microprobe band-to-band photoluminescence experiments. Thermalized non-equilibrium distributions are found in all classes of QCLs. While in the case of bound-to-continuum structures all subbands share the same temperature, the upper laser level of active regions based on the resonant-phonon scheme heats up by ΔT ~ 100 K with respect to lower energy levels. The comparison among samples with different Al mole fractions show that the use of smaller x values leads to larger electronic temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Luryi, “Hot Carriers in Semiconductors: Physics and Devices”, Clarendon, Oxford (1998)

    Google Scholar 

  2. M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 86, 111115 (2005).

    Article  Google Scholar 

  3. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).

    Article  Google Scholar 

  4. G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, Science 276, 773 (1997).

    Article  Google Scholar 

  5. R. Ferreira and G. Bastard, Phys. Rev. B 40, 1074 (1989).

    Article  Google Scholar 

  6. M. Hartig, S. Haacke, B. Deveaud, and L. Rota, Phys. Rev. B 54, 14269 (1996).

    Article  Google Scholar 

  7. J. H. Smet, C. G. Fonstad, and Q. Hu., J. Appl. Phys. 79, 9305 (1996).

  8. B. Xu., PhD Dissertation, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, (1998).

  9. V.B. Gorfinkel, S. Luryi, B. Gelmont, IEEE J. Quant. Electron. 32, 1995 (1996).

    Article  Google Scholar 

  10. M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, and C. Sirtori, Appl. Phys. Lett. 89, 021111 (2006).

    Article  Google Scholar 

  11. M. S. Vitiello, G. Scamarcio, and V. Spagnolo, J. Nanophot. 1, 013514 (2007).

    Article  Google Scholar 

  12. G. Scamarcio, M.S. Vitiello, V. Spagnolo, S. Kumar, B.S. Williams and Q. Hu, Physica E, 40, 1780 (2008).

    Article  Google Scholar 

  13. M.S. Vitiello, G. Scamarcio and V. Spagnolo, IEEE, J. Select. Top. Quant. Electron., 14, 431 (2008).

    Article  Google Scholar 

  14. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritche, R.C. Iotti and F. Rossi, Nature 417, 156 (2002).

    Article  Google Scholar 

  15. G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie and G. Davies, Appl. Phys. Lett. 82, 3165 (2003).

    Article  Google Scholar 

  16. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 82, 1015 (2003).

    Article  Google Scholar 

  17. S. Fathololoumi, E. Dupont, C.W.I. Chan, Z.R. Wasilewski, S.R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, Opt. Exp. 20, 3866 (2012).

    Article  Google Scholar 

  18. M.S. Vitiello, G. Scamarcio, V. Spagnolo, L. Mahler, T. Losco, A. Tredicucci, H. E. Beere and D. A. Ritchie, Appl. Phys. Lett. 88, 2411091 (2006).

    Article  Google Scholar 

  19. M.S. Vitiello, G. Scamarcio, V. Spagnolo, C. Worral, H.E. Beere, D.A. Ritchie, C. Sirtori, J. Alton and S. Barbieri, App. Phys. Lett. 89, 131114 (2006).

    Article  Google Scholar 

  20. Q. Hu, B. S. Williams, S. Kumar, H. Callebaut, S. Kohen and J. L. Reno, Semicon. Science and Technol. 20, S228, (2005).

    Article  Google Scholar 

  21. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu and J. L. Reno, Appl. Phys. Lett. 83, 5142 (2003).

    Article  Google Scholar 

  22. S. Kumar, B. S. Williams, S. Kohen, Q. Hu and J. L. Reno, Appl. Phys. Lett. 84, 2494 (2004).

    Article  Google Scholar 

  23. L. Mahler, A. Tredicucci, R. Kohler, F. Beltram, H. E. Beere, E. H. Linfield and D. A. Ritchie, Appl. Phys. Lett. 87, 1811011 (2005).

    Article  Google Scholar 

  24. C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, Appl. Phys. Lett. 89, 231121 (2006).

    Article  Google Scholar 

  25. S. Kumar, B. S. Williams, Q. Hu and J. L. Reno, Appl. Phys. Lett. 88, 121123 (2006).

    Article  Google Scholar 

  26. S. Barbieri, J. Alton, H.E. Beere, J. Fowler, E.H. Linfield, D.A. Ritchie, Appl. Phys. Lett. 85, 1674 (2004).

    Article  Google Scholar 

  27. C. Worrall, J. Alton, M. Houghton, S. Barbieri, H.E. Beere, D.A. Ritchie, C. Sirtori, Opt. Express 14, 171 (2006).

    Article  Google Scholar 

  28. V. Spagnolo, M. Troccoli, G. Scamarcio, C. Gmachl, F. Capasso, A. Tredicucci, A.M. Sergent, A.L. Hutchinson, D.L. Sivco, A.Y. Cho, Appl. Phys. Lett. 78, 2095 (2001).

    Article  Google Scholar 

  29. V. Spagnolo, M. Troccoli, G. Scamarcio, C. Becker, G. Glastre, C. Sirtori, App. Phys. Lett. 78, 1177 (2001).

    Article  Google Scholar 

  30. V. Spagnolo, G. Scamarcio, H. Page, and C. Sirtori, Appl. Phys. Lett. 84, 3690 (2004).

    Article  Google Scholar 

  31. V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A.M. Sergent, A.L. Hutchinson, D.L. Sivco, A.Y. Cho, H. Page, C. Becker and C. Sirtori, IEE Proc.-Optoelectron. 150, 298 (2003).

    Article  Google Scholar 

  32. M. Gurioli, A Vinattieri, M. Colocci, C. Deparis, J. Massies, G. Neu, A. Bosacchi and S. Franchi, Phys. Rev. B 44, 3115, (1991).

    Article  Google Scholar 

  33. J. Shah, "Hot Carriers in Semiconductor Nanostructures: Physics and Applications,” (Academic, New York, 1992).

    Google Scholar 

  34. J. Martinez-Pastor, A. Vinattieri, L. Carraresi, M. Colocci, Ph. Roussignol and G. Weimann, Phys. Rev. B 47, 10456, (1993).

    Article  Google Scholar 

  35. J. Humlicek, E. Schmidt, L. Bocanek, R. Svela and K. Ploog, Phys. Rev B, 48, 5241 (1993).

    Article  Google Scholar 

  36. R. Kumar, S.S. Prabhu and A.S. Vengurlekar, Physica Scripta 56, 308 (1997).

    Article  Google Scholar 

  37. P. Dawson, G. Duggan, H.I. Ralph and K. Woodbridge, Phys. Rev. B 28, 7381, (1983).

    Article  Google Scholar 

  38. R. C. Iotti and F. Rossi, Appl. Phys. Lett. 78, 2902 (2001).

    Article  Google Scholar 

  39. H. Callebaut, S. Kumar, B. S. Williams, Q. Hu and J. L. Reno, Appl. Phys. Lett. 83, 207 (2003).

    Article  Google Scholar 

  40. C. Sirtori, F. Capasso, J. Faist, D.L. Sivco, A. Hutchinson, A.Y. Cho, IEEE J. Quantum Electron. 34, 1722 (1998).

    Article  Google Scholar 

  41. H. Callebaut, S. Kumar, B.S. Williams, Q. Hu, J.L. Reno, Appl. Phys. Lett., 80, 207 (2003).

    Article  Google Scholar 

  42. P. Hyldgaard, J.W. Wilkins, Phys. Rev. B, 53, 6889 (1996).

    Article  Google Scholar 

  43. M. Hartig, S. Haacke, R. A. Taylor , L. Rota, B. Deveaud, Superlatt. Microstr., 21, 77 (1997).

    Article  Google Scholar 

  44. M. Hartig, S. Haacke, P. E. Selbmann, B. Deveaud , R. A. Taylor, L. Rota, Phys. Rev. Lett., 80, 1940 (1998).

    Article  Google Scholar 

  45. M.S. Vitiello, G. Scamarcio, J. Faist, G. Scalari, C. Walther, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 94, 021115 (2009).

    Article  Google Scholar 

  46. S. Kumar, C.W.I. Chan, Q. Hu, and J.L. Reno, Nature Phys. 7, 166 (2011).

    Article  Google Scholar 

  47. V. Spagnolo, G. Scamarcio, W. Schrenk, and G. Strasser, Semicond. Sci. Technol. 19, S110 (2004).

    Article  Google Scholar 

  48. E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, J. Appl. Phys. 111, 073111 (2012).

    Article  Google Scholar 

  49. P. Patimisco, G. Scamarcio, M. V. Santacroce, V. Spagnolo, M. S. Vitiello, E.Dupont, S. R. Laframboise, S. Fathololoumi, G. S. Razavipour, Z. Wasilewski, Opt. Exp. 21, 10172 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Q. Hu, B. S. Williams, S. Kumar, J. Faist, G. Scalari, A. Tredicucci, S. Barbieri, C. Sirtori, H. E. Beere, D. A. Ritchie and J. L. Reno for providing QCL devices and useful discussions. M.S.V. acknowledges financial support of the Italian Ministry of Education, University, and Research (MIUR) through the program “FIRB-Futuro in Ricerca 2010" RBFR10LULP “Fundamental research on terahertz photonic devices". G. S. and V. S. acknowledge partial finantial support of MIUR through the programs PON01_02238, PON02_00576 and PON02_00675.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Scamarcio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scamarcio, G., Vitiello, M.S. & Spagnolo, V. Hot Electrons in THz Quantum Cascade Lasers. J Infrared Milli Terahz Waves 34, 357–373 (2013). https://doi.org/10.1007/s10762-013-9979-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-013-9979-1

Keywords

Navigation