Skip to main content
Log in

Fundamentals of Measurement in Terahertz Time-Domain Spectroscopy

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Terahertz time-domain spectroscopy (THz-TDS) has emerged as a main spectroscopic modality to fill the frequency range between a few hundred gigahertz to a few terahertz. This spectrum has been known as “terahertz gap” owing to limited accessibility by conventional electronic and optical techniques. Over the past two decades, THz-TDS has evolved substantially with enhanced compactness and stability. Since THz-TDS is becoming an industrial standard, the performance and precision of the system are of prime importance. This article provides an overview on terahertz metrology, including parameter estimation, signal processing, measurement characteristics, uncertainties, and calibrations. The overview serves as guidance for metrology and further developments of THz-TDS systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Applied Physics Letters, vol. 45, no. 3, pp. 284–286, 1984.

  2. M. V. Klein, Optics. New York: John Wiley & Sons, 1970.

  3. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” Journal of the Optical Society of America B: Optical Physics, vol. 7, no. 10, pp. 2006–2015, 1990.

  4. L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, no. 3, pp. 739–746, 1996.

  5. L. Duvillaret, F. Garet, and J.-L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Applied Optics, vol. 38, no. 2, pp. 409–415, 1999.

  6. T. Dorney, R. Baraniuk, and D. Mittleman, “Material parameter estimation with terahertz time-domain spectroscopy,” Journal of the Optical Society of America A: Optics, Image Science, and Vision, vol. 18, no. 7, pp. 1562–1571, 2001.

  7. I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determinationwith THz time-domain spectroscopy,” Optics Express, vol. 15, no. 7, pp. 4335–4350, 2007.

  8. M. Scheller and M. Koch, “Fast and accurate thickness determination of unknown materials using terahertz time domain spectroscopy,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 30, no. 7, pp. 762–769, 2009.

  9. M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100- μm samples with transmission terahertz time domain spectroscopy,” Optics Communications, vol. 282, no. 7, pp. 1304–1306, 2009.

  10. B. M. Fischer, M. Hoffmann, and P. U. Jepsen, “Dynamic range and numerical error propagation in terahertz time-domain spectroscopy,” in Optical Terahertz Science and Technology, Technical Digest (CD), Optical Society of America, 2005. paper TuD1.

  11. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” Journal of the Korean Physical Society, vol. 49, no. 2, pp. 513–517, 2006.

  12. M. Naftaly, “Metrology issues and solutions in THz time domain spectroscopy: noise, errors, calibration,” IEEE Sensors Journal, vol. 13, no. 1, pp. 8–17, 2013.

  13. M. Naftaly and R. Dudley, “Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers,” Optics Letters, vol. 34, no. 8, pp. 1213–1215, 2009.

  14. P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Optics Letters, vol. 30, no. 1, pp. 29–31, 2005.

  15. S. R. Tripathi, M. Aoki, K. Mochizuki, I. Hosako, T. Asahi, and N. Hiromoto, “Practical method to estimate the standard deviation in absorption coefficients measured with THz time-domain spectroscopy,” Optics Communications, vol. 283, no. 12, pp. 2488–2491, 2010.

  16. J. F. O’Hara, W. Withayachumnankul, and I. Al-Naib, “A review on thin-film sensing with terahertz waves,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 33, no. 3, pp. 245–291, 2012.

  17. W. Withayachumnankul, “Limitation in thin-film detection with transmission-mode terahertz time-domain spectroscopy,” arXiv preprint arXiv:1111.3498, 2011.

  18. S. P. Mickan, J. Xu, J. Munch, X.-C. Zhang, and D. Abbott, “The limit of spectral resolution in thz time-domain spectroscopy,” in SPIE Microelectronics, MEMS, and Nanotechnology, pp. 54–64, International Society for Optics and Photonics, 2004.

  19. H. Lin, C. Fumeaux, B. M. Fischer, and D. Abbott, “Modelling of sub-wavelength THz sources as gaussian apertures,” Optics Express, vol. 18, no. 17, pp. 17672–17683, 2010.

  20. J. Van Rudd and D. M. Mittleman, “Influence of substrate-lens design in terahertz time-domain spectroscopy,” Journal of the Optical Society of America B: Optical Physics, vol. 19, no. 2, pp. 319–329, 2002.

  21. D. F. Filipovic, G. P. Gauthier, S. Raman, and G. M. Rebeiz, “Off-axis properties of silicon and quartz dielectric lens antennas,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 5, pp. 760–766, 1997.

  22. M. T. Reiten, S. A. Harmon, and R. A. Cheville, “Terahertz beam propagation measured through three-dimensional amplitude profile determination,” Journal of the Optical Society of America B: Optical Physics, vol. 20, no. 10, pp. 2215–2225, 2003.

  23. P. U. Jepsen and S. Keiding, “Radiation patterns from lens-coupled terahertz antennas,” Optics Letters, vol. 20, no. 8, pp. 807–809, 1995.

  24. R. Rungsawang, K. Ohta, K. Tukamoto, and T. Hattori, “Ring formation of focused half-cycle terahertz pulses,” Journal of Physics D: Applied Physics, vol. 36, no. 3, pp. 229–235, 2003.

  25. A. Bitzer, H. Helm, and M. Walther, “Beam-profiling and wavefront-sensing of thz pulses at the focus of a substrate-lens,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 2, pp. 476–481, 2008.

  26. J. Bowen, G. Walker, S. Hadjiloucas, and E. Berry, “The consequences of diffractively spreading beams in ultrafast THz spectroscopy,” in Conference Digest of the 2004 Joint 29th International Conference on Infrared and Millimeter Waves, 2004 and 12th International Conference on Terahertz Electronics, 2004, pp. 551–552, IEEE, 2004.

  27. D. Choi, H. Son, H. Park, and G. Park, “Focused beam effect on measuring precise optical parameters of liquid water with terahertz time domain spectroscopy,” in 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), 2011, pp. 1–2, IEEE, 2011.

  28. J. Son, J. V. Rudd, and J. F. Whitaker, “Noise characterization of a self-mode-locked Ti:sapphire laser,” Optics Letters, vol. 17, no. 10, pp. 733–735, 1992.

  29. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE Journal of Quantum Electronics, vol. 29, no. 3, pp. 983–996, 1993.

  30. A. Poppe, L. Xu, F. Krausz, and C. Spielmann, “Noise characterization of sub-10-fs Ti:sapphire oscillators,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, no. 2, pp. 179–184, 1998.

  31. M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Transactions on Microwave Theory and Techniques, vol. 38, no. 11, pp. 1684–1691, 1990.

  32. L. Duvillaret, F. Garet, and J.-L. Coutaz, “Influence of noise on the characterization of materials by terahertz time-domain spectroscopy,” Journal of the Optical Society of America B: Optical Physics, vol. 17, no. 3, pp. 452–460, 2000.

  33. J. Letosa, M. García-Gracia, J. M. Forniés-Marquina, and J. M. Artacho, “Performance limits in TDR technique by Monte Carlo simulation,” IEEE Transactions on Magnetics, vol. 32, no. 3, pp. 958–961, 1996.

  34. N. Cohen, J. W. Handley, R. D. Boyle, S. L. Braunstein, and E. Berry, “Experimental signature of registration noise in pulsed terahertz systems,” Fluctuation and Noise Letters, vol. 6, no. 1, pp. L77–L84, 2006.

  35. W. Withayachumnankul, B. M. Fischer, H. Lin, and D. Abbott, “Uncertainty in terahertz time-domain spectroscopy measurements,” Journal of the Optical Society of America B: Optical Physics, vol. 25, no. 6, pp. 1059–1072, 2008.

  36. M. Grabe, “Estimation of measurement uncertainties—an alternative to the ISO guide,” Metrologia, vol. 38, pp. 97–106, 2001.

  37. W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Material thickness optimization for transmission-mode terahertz time-domain spectroscopy,” Optics Express, vol. 16, no. 10, pp. 7382–7396, 2008.

  38. R. E. Allman and R. J. Foltynowicz, “Terahertz time-domain spectroscopy of atmospheric water vapor from 0.4 to 2.7 THz,” tech. rep., Sandia National Laboratories, 2005.

  39. D. M. Mittleman, R. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Applied Physics B: Lasers and Optics, vol. 67, no. 3, pp. 379–390, 1998.

  40. X. Xin, H. Altan, A. Saint, D. Matten, and R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” Journal of Applied Physics, vol. 100, no. 9, pp. 094905–094905, 2006.

  41. L. Rothman, I. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. Brown, et al., “The HITRAN2012 molecular spectroscopic database,” Journal of Quantitative Spectroscopy and Radiative Transfer, 2013.

  42. G. W. Chantry, Submillimetre spectroscopy, vol. 1. Academic Press, London, UK, 1971.

  43. W. Aenchbacher, M. Naftaly, and R. Dudley, “Line strengths and self-broadening of pure rotational lines of carbon monoxide measured by terahertz time-domain spectroscopy,” Applied Optics, vol. 49, no. 13, pp. 2490–2496, 2010.

  44. W. Aenchbacher, M. Naftaly, and R. Dudley, “Line strengths and self-broadening of pure rotational lines of nitrous oxide measured by terahertz time-domain spectroscopy,” Journal of the Optical Society of America B: Optical Physics, vol. 27, no. 9, pp. 1717–1721, 2010.

  45. M. Naftaly, R. Dudley, and J. Fletcher, “An etalon-based method for frequency calibration of terahertz time-domain spectrometers (THz TDS),” Optics Communications, vol. 283, no. 9, pp. 1849–1853, 2010.

  46. R. D. Guenther, Modern optics. Wiley-VCH, 1990.

  47. M. Naftaly and R. Dudley, “Linearity calibration of amplitude and power measurements in terahertz systems and detectors,” Optics Letters, vol. 34, no. 5, pp. 674–676, 2009.

  48. W. Withayachumnankul, B.-Y. Ung, B. M. Fischer, and D. Abbott, “Measurement of linearity in thz-tds,” in 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2009, pp. 1–2, IEEE, 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Withawat Withayachumnankul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Withayachumnankul, W., Naftaly, M. Fundamentals of Measurement in Terahertz Time-Domain Spectroscopy. J Infrared Milli Terahz Waves 35, 610–637 (2014). https://doi.org/10.1007/s10762-013-0042-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-013-0042-z

Keywords

Navigation