Skip to main content
Log in

Principles of Impedance Matching in Photoconductive Antennas

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The principles of impedance matching in photoconductive antennas in comparison with conventional antennas are described. Because of the optical nature of the input signal in photoconductive antennas and the dependence of photoconductor conductance on the optical pump power, the optimum photoconductor impedance is not necessarily determined by the complex conjugate of antenna impedance. Using the equivalent circuit model of photoconductive antennas, the photoconductor impedance optimization criteria are evaluated according to the photoconductive antenna structure and operational settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284-286 (1984).

    Article  Google Scholar 

  2. S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, J. Appl. Phys. 109, 061301 (2011).

    Article  Google Scholar 

  3. P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).

    Article  Google Scholar 

  4. M. van Exter, and D. Grischkowsky, IEEE Microwave Theory Technol. 38, 1684 (1990).

    Article  Google Scholar 

  5. B. B. Hu and M. C. Nuss, Opt. Lett. 20, 1716-1718 (1995).

    Article  Google Scholar 

  6. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, IEEE Journal on Selected Topics in Quantum Electronics 2, 679-692 (1996).

    Article  Google Scholar 

  7. A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, Physics in Medicine and Biology 47, 3739-3805 (2002)

    Article  Google Scholar 

  8. D. D. Arnone, C. Ciesla, and M. Pepper, Physics World 13, 35-40 (2000).

    Google Scholar 

  9. J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, Journal of Pharmacy and Pharmacology 59, 209-223 (2007).

    Article  Google Scholar 

  10. D. G. Rowe, Nature Photonics 1, 75-77 (2007).

    Article  Google Scholar 

  11. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, Proc. SPIE 5070, 44-52 (2003).

    Article  Google Scholar 

  12. S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, IEEE Trans. Microwave Theory Tech. 49, 1032-1038 (2001).

    Article  Google Scholar 

  13. E. R. Brown, International Journal of High Speed Electronics and Systems 13, 497-545 (2003).

    Article  Google Scholar 

  14. E. R. Brown, F. W. Smith, and K. A. McIntosh, J. Appl. Phys. 73, 1480-1484 (1993).

    Article  Google Scholar 

  15. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, IEEE J. Quantum Electron. 41, 717-728 (2005).

    Article  Google Scholar 

  16. F. T. Ulaby, Fundamentals of Applied Electromagnetics, Prentice Hall, Upper Saddle River, New Jersey (1997).

    Google Scholar 

  17. G. C. Loata, M. D. Thomson, T. Löffler, and H. G. Roskos, Appl. Phys. Lett. 91, 232506 (2007).

    Article  Google Scholar 

  18. M. B. Gray, D. A. Shaddock, C. C. Harb, and H.-A. Bachor, Review of Scientific Instruments 69, 3755-3762 (1998).

    Article  Google Scholar 

  19. P. Uhd Jepsen, R. H. Jacobsen, and S. R. Keiding, J. Opt. Soc. Am. B 13, 2424-2436 (1996).

    Article  Google Scholar 

  20. Z. Piao, M. Tani, and K. Sakai, Jpn. J. Appl. Phys. 39, 96-100 (2000).

    Article  Google Scholar 

  21. K. Ezdi, B. Heinen, C. Jordens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, J. European Opt. Soc. 4, 09001 (2009).

    Article  Google Scholar 

  22. E. R. Brown, A. W. M. Lee, B. S. Navi and J. E. Bjarnason, Microwave and Optical Technology Lett. 48, 524-529 (2006).

    Article  Google Scholar 

  23. Y. Huo, G. W. Taylor, and R. Bansal, Int. J. Infrared and Millimeter Waves 23, 819 (2002).

    Article  Google Scholar 

  24. K. Ezdi, M. N. Islam,Y. A. N. Reddy, C. Jördens, A. Enders, M. Koch, Proc. SPIE 6194, 61940 G (2006).

    Article  Google Scholar 

  25. S. E. Ralph and D. Grischkowsky, Appl. Phys. Lett. 59, 1972-1974 (1991).

    Article  Google Scholar 

  26. M. Awad, M. Nagel, H. Kurz, J. Herfort, and L. Ploog, Appl. Phys. Lett. 91, 181124 (2007).

    Article  Google Scholar 

  27. M. Beck, H. Schafer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, Opt. Express 18, 9251-9257 (2010).

    Article  Google Scholar 

  28. M. Jarrahi, and T. H. Lee, Proc. IEEE International Microwave Symposium, 391-394 (2008).

  29. M. Jarrahi, Photon. Technol. Lett. 21, 2019620 (2009).

    Article  Google Scholar 

  30. T. Hattori, K. Egawa, S. I. Ookuma, and T. Itatani, Japanese J. Appl. Phys. 45, L422-L424 (2006).

    Article  Google Scholar 

  31. J. H. Kim, A. Polley, and S. E. Ralph, Opt. Lett. 30, 2490-2492 (2005).

    Article  Google Scholar 

  32. H. Roehle,R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, Opt. Express 18, 2296-2301 (2010).

    Article  Google Scholar 

  33. Z. D. Taylor, E. R. Brown, J. E. Bjarnason, M. P. Hanson, and A. C. Gossard, Opt. Lett. 31, 1729-1731 (2006).

    Article  Google Scholar 

  34. C. W. Berry, M. Jarrahi, New Journal of Physics Focus Issue on Plasmonics (2012).

  35. B-Y. Hsieh, M. Jarrahi, J. Appl. Phys. 109, 084326 (2011).

    Google Scholar 

  36. B-Y. Hsieh, M. Jarrahi, Special Issue of "Optics in 2011" Optics & Photonics News 22, 48 (2011).

  37. C.W. Berry, M. Jarrahi, Proc. Conf. Lasers and Electro-Optics CFI2, San Jose, CA, May 16-21 (2010).

  38. C. W. Berry, M. Jarrahi, Proc. Int. Conf. Infrared, Millimeter, and Terahertz Waves, Houston, TX, 2-7 Oct (2011).

  39. C. W. Berry, M. Jarrahi, Proc. Conf. Lasers and Electro-Optics CF2M.1, San Jose, CA, 6-11 May (2012).

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from DARPA Young Faculty Award (# N66001-10-1-4027), NSF Career Award (# N00014-11-1-0096), ONR Young Investigator Award (# N00014-12-1-0947), and ARO Young Investigator Award (# W911NF-12-1-0253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Jarrahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, C.W., Jarrahi, M. Principles of Impedance Matching in Photoconductive Antennas. J Infrared Milli Terahz Waves 33, 1182–1189 (2012). https://doi.org/10.1007/s10762-012-9937-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-012-9937-3

Keywords

Navigation